A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

2016 Revised Edition
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

This guide is intended to provide a brief introduction to basic topics in pediatric rheumatology. Each topic is accompanied by at least one up-to-date reference that will allow you to explore the topic in greater depth.

In addition, a list of several excellent textbooks and other resources for you to use to expand your knowledge is found in the Appendix.

We are interested in your feedback on the guide! If you have comments or questions, please feel free to contact us via email at pedrheumguide@gmail.com.

Supervising editors:

- Dr. Ronald M. Laxer, Staff Rheumatologist, SickKids Hospital, University of Toronto
- Dr. Tania Cellucci, Staff Rheumatologist, McMaster Children’s Hospital, McMaster University
- Dr. Evelyn Rozenblyum, Staff Rheumatologist, SickKids Hospital, University of Toronto, and Royal University Hospital, University of Saskatchewan

Section editors:

- Dr. Michelle Batthish, Staff Rheumatologist, McMaster Children’s Hospital, McMaster University
- Dr. Clare Hutchinson, Staff Rheumatologist, North York General Hospital, University of Toronto
- Dr. Dax Rumsey, Staff Rheumatologist, Stollery Children’s Hospital, University of Alberta
- Dr. Gordon Soon, Staff Rheumatologist, North York General Hospital and SickKids Hospital Northern Clinic in Sudbury, University of Toronto
- Dr. Rebeka Stevenson, Staff Rheumatologist, Alberta Children’s Hospital, University of Calgary
- Dr. Alisa Rachlis, Associate Staff Rheumatologist, SickKids Hospital, University of Toronto
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An Introduction to Pediatric Rheumatology</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Approaches and Differential Diagnoses for Common Complaints Referred to Pediatric Rheumatology</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Juvenile Idiopathic Arthritis</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Systemic Lupus Erythematosus and Related Conditions</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Systemic Vasculitis</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Inflammatory Brain Diseases</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Idiopathic Inflammatory Myopathies</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Systemic Sclerosis and Related Conditions</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Fever and Associated Syndromes</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>Infection and Infection-Related Conditions</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Uveitis</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>Pain Syndromes</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>Pediatric Rheumatology Emergencies</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>Medications</td>
<td>97</td>
</tr>
<tr>
<td>Appendix</td>
<td>Helpful Resources in Pediatric Rheumatology</td>
<td>104</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>

Notes:

Please consider that treatment regimens discussed in the guide are suggestions based on evidence-based guidelines and/or common practices by the pediatric rheumatologists who are section editors of the guide. Alternative treatment approaches may be used in other centres.

More detailed information on medications (class, action, dose, side effects, monitoring) may be found in the Medications section.
SECTION 1 – AN INTRODUCTION TO PEDIATRIC RHEUMATOLOGY

1A. Pediatric Rheumatologic History

An appropriate rheumatologic history for a new patient should cover the following areas:

History of presenting complaint
Onset, duration, pattern
Potential triggers, such as trauma, infection or immunizations
Severity and impact on function, including school and activities of daily living
Associated symptoms
Factors that improve or worsen symptoms
Previous investigations
Previous treatment, including effectiveness and adverse reactions

Past medical history
Chronic medical conditions
Admissions to hospital, surgeries
Eye examinations

Development
Brief review of all domains - gross motor, fine motor, speech, language, hearing, social

Immunizations
All childhood vaccinations
Varicella – Infection or vaccination?

Medications
Prescribed medications – dose, route, frequency, adherence
Over-the-counter medications, vitamins, herbal supplements

Allergies

Travel history (especially risk factors for tuberculosis or Lyme infections)

Family history
Ethnicity and consanguinity
Rheumatologic diseases: Juvenile idiopathic arthritis (JIA), rheumatoid arthritis (RA)
Ankylosing spondylitis (AS)
Premature osteoarthritis
Inflammatory bowel disease (IBD)
Psoriasis
Systemic lupus erythematosus (SLE)
Vasculitis
Periodic fevers

Other autoimmune diseases: Diabetes mellitus type I, Celiac disease, Thyroid disease

Social history
Parents marital status, occupations, care providers, drug coverage, adolescent HEADSS
Review of systems

General: Energy level, fatigue, poor sleep, non-restful sleep
Anorexia, weight loss
Fevers → frequency, duration, pattern, associated symptoms
Functioning → home, social, school, extra-curricular activities, work

HEENT: Photophobia, blurred vision, redness, pain
Sicca symptoms (dry eyes, dry mouth)
Nasal and/or oral ulcers (painful or painless)
Epistaxis
Dysphagia
Otalgia, hearing difficulties

CVS: Chest pain, orthopnea, syncope
Peripheral acrocyanosis
Raynaud phenomenon

Respiratory: Difficulty breathing, shortness of breath
Pleuritic chest pain
Prolonged cough, productive cough, hemoptysis

GI: Recurrent abdominal pain, “heartburn”
Diarrhea, constipation, bloody stools, melena
Nausea, vomiting

Skin: Any type of skin rash on face, scalp, trunk, limbs
Petechiae, purpura
Nodules
Ulcers (includes genital/perineal)
Photosensitivity
Alopecia, hair changes
Nail changes (pits, onycholysis) and nail fold changes

Joints: Pain (day and/or night), swelling, redness, heat, decreased range of motion
Loss of function, reduced activities, pain waking from sleep
Inflammatory → morning stiffness or gelling, improves with activity or exercise
Mechanical → improves with rest, “locking”, “giving away”

Muscles: Pain
Muscle weakness (proximal vs. distal)
Loss of function, reduced activities

CNS: Headaches
Psychosis, visual distortions
Cognitive dysfunction, drop in school grades
Seizures

PNS: Motor or sensory neuropathy

GU: Dysuria, change in urine volume or colour
Irregular, missed or prolonged menstrual periods, heavy menses
1B. Pediatric Rheumatologic Examination

Vital signs (including blood pressure percentiles)
Height, weight, BMI (percentiles, recent changes)

General appearance
HEENT: Conjunctival injection or hemorrhage, pupils (shape and reaction)
Complete ophthalmoscope examination from cornea to fundus
Nasal mucosa, nasal discharge, sinus tenderness
Oropharyngeal mucosa, tongue, tonsils
Thyroid
CVS: Heart sounds, murmurs, rubs, precordial examination
Vascular bruits (if indicated)
Peripheral pulses, peripheral perfusion, capillary refill
Lungs: Respiratory excursion, percussion, Breath sounds, adventitious sounds
Abdomen: Tenderness, peritoneal signs, masses, bowel sounds, bruits (if indicated)
Hepatomegaly, splenomegaly
LN: Assess all palpable lymph node groups
Skin: Any type of skin rash, including petechiae, purpura, nodules, and ulcers
Alopecia, hair abnormalities
Nails: Nail pits, clubbing, onychonychia
Nail fold capillaries – thickening, branching, drop-out, hemorrhages
Digital ulcers, splinter hemorrhages, loss of digital pulp
CNS: Mental status
Cranial nerves
Motor: muscle bulk, tone, power/strength, tenderness, deep tendon reflexes
Cerebellar
Gait (walking, running, heels, toes, and tandem)
Sensory (if indicated), allodynia borders (if indicated)
Joints: Begin with a screening exam, such as the Pediatric Gait Arms Legs (pGALS)
Assess all joints for heat, swelling, tenderness, stress pain, active and passive range of motion, deformity
Enthesitis sites
Localized bony/joint tenderness
Leg length (functional and/or actual)
Thigh, calf circumference difference (if indicated)
Back: Range of motion, tenderness, repetitive stress pain
Scoliosis
Modified Schober test (if indicated)
Other: Fibromyalgia tender points (if indicated)
1C. Laboratory Testing in Pediatric Rheumatology

General Principles

- Interpret all laboratory results in context of specific patient
- Consider the clinical rationale and potential impact of all laboratory tests that are ordered, especially for autoantibody testing
- Review all laboratory test results to guide interpretation of abnormalities
- Trends in laboratory values may be more important than isolated abnormalities

Complete blood cell count and differential

- Hemoglobin, red blood cell count and mean corpuscular volume
 - Normocytic or microcytic anemia in chronic inflammatory disease
 - Autoimmune hemolytic anemia in systemic lupus erythematosus (SLE)
 - Non-immune hemolytic anemia in macrophage activation syndrome (MAS)
 - Iron deficiency anemia if chronic blood loss (e.g. due to NSAIDs, inflammatory bowel disease)
- White blood cell count and differential
 - High white blood cell counts may be due to infection, systemic inflammation, or side-effect of corticosteroids
 - Leukopenia with lymphopenia and/or neutropenia may be due to systemic inflammation or medications
- Platelet count
 - Active inflammation may lead to increased platelet counts (e.g. subacute phase of Kawasaki disease, systemic juvenile idiopathic arthritis (JIA), or Takayasu arteritis) or reduced platelet counts (e.g. SLE)

Acute phase response

- Acute phase reactants are plasma proteins produced by the liver that change production during acute phase of inflammation
- Acute phase response mediated by cytokines, such as IL-1, IL-6 and TNF (which are the target of many biologic agents used in childhood rheumatic diseases)
- Substantial acute phase response may be seen in infection, trauma, burns, tissue infarction, advanced cancer and immune-mediated disease
- Mild elevation may be seen in benign conditions, such as obesity, pregnancy, and strenuous exercises
- Overall effect of acute phase response is to protect host from damage
- Excessive or prolonged acute phase response may be deleterious itself (e.g. septic shock, MAS, malignancy)

C-reactive protein (CRP)

- Direct measure of inflammation (sensitive but not specific)
- Level rises rapidly in response to inflammation and falls quickly with appropriate treatment
- May reflect severe disease more closely than other acute phase reactants, although this may be patient-specific and/or disease-dependent (e.g. CRP typically rises in patients with SLE when there is infection, serositis or MAS, but may be normal with active disease)
- **Erythrocyte sedimentation rate (ESR)**
 - Indirect measure of acute phase reaction
 - Changes more slowly than CRP
 - Measure rate at which red blood cells settle in a tube of anticoagulated blood in one hour
 - Depends on fibrinogen, gamma globulins

- **Ferritin**
 - Protein central to iron homeostasis
 - Serum ferritin levels increase in setting of inflammation
 - May not be a reliable measure of iron status in setting of inflammatory disease

<table>
<thead>
<tr>
<th>Increase in acute phase response</th>
<th>Decrease in acute phase response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP, ESR</td>
<td>Albumin</td>
</tr>
<tr>
<td>Complement proteins</td>
<td>Transferrin</td>
</tr>
<tr>
<td>Fibrinogen, coagulation proteins</td>
<td>IGF-1</td>
</tr>
<tr>
<td>Ferritin</td>
<td></td>
</tr>
<tr>
<td>Ceruloplasmin</td>
<td></td>
</tr>
<tr>
<td>Haptoglobin</td>
<td></td>
</tr>
<tr>
<td>G-CSF</td>
<td></td>
</tr>
<tr>
<td>IL-1 receptor antagonist</td>
<td></td>
</tr>
<tr>
<td>Serum amyloid A</td>
<td></td>
</tr>
</tbody>
</table>

Complement

- Increased levels of complement components frequently seen in inflammation
- Low complement levels present in SLE, acute post-infectious glomerulonephritis, membrano-proliferative glomerulonephritis, or liver disease
- Congenital complement deficiencies predispose either to recurrent infections (mainly encapsulated organisms) or to unusual autoimmune disease (“lupus-like” disease)
- In SLE, serial measurements of C3 and C4 are useful to monitor disease activity
 - Complement levels tend to fall during a flare and return to normal concentration after appropriate therapy
 - Persistently low C3 associated with lupus nephritis

Autoantibodies

Antinuclear antibodies (ANA)

- Autoantibodies directed against nuclear, nucleolar or perinuclear antigens
- ANA should not be used as a screening tool
 - Low titres of ANA (e.g. ANA ≤ 1:80) may be present in up to 30% of normal healthy population and may revert to negative over time
 - ANA may also be present in non-rheumatologic diseases (e.g. infection, malignancy, medications)
- Low titres of non-specific ANA may be seen in JIA (e.g. ANA ≤ 1:160)
 - Positive ANA in JIA associated with higher risk of uveitis, asymmetric arthritis and early disease onset (do not need to repeat regularly once positive ANA established, as highlighted in Choosing Wisely: Pediatric Rheumatology Top 5 by American College of Rheumatology)
Persistent high titres of ANA (e.g. ANA ≥ 1:160) in connective tissue diseases, such as SLE
- Negative ANA makes diagnosis of SLE unlikely
- Specific antibodies (e.g. anti-double stranded DNA) should only be requested if ANA is positive and there is evidence of rheumatic disease (highlighted in Choosing Wisely: Pediatric Rheumatology Top 5 by American College of Rheumatology)

<table>
<thead>
<tr>
<th>Specific antibodies</th>
<th>Characteristic disease associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-dsDNA</td>
<td>SLE</td>
</tr>
<tr>
<td>Anti-Ro/SSA</td>
<td>SLE, Neonatal lupus erythematosus, Sjögren</td>
</tr>
<tr>
<td>Anti-La/SSB</td>
<td>SLE, Neonatal lupus erythematosus, Sjögren</td>
</tr>
<tr>
<td>Anti-Sm</td>
<td>SLE</td>
</tr>
<tr>
<td>Anti-RNP</td>
<td>Mixed connective tissue disease, SLE, Systemic sclerosis</td>
</tr>
<tr>
<td>Anti-histone</td>
<td>Drug-induced lupus, SLE</td>
</tr>
<tr>
<td>Anti-Scl 70</td>
<td>Diffuse systemic sclerosis</td>
</tr>
<tr>
<td>Anti-centromere</td>
<td>Limited systemic sclerosis (CREST)</td>
</tr>
<tr>
<td>Anti-Jo1</td>
<td>Polymyositis with interstitial lung disease, juvenile dermatomyositis (JDM)</td>
</tr>
<tr>
<td>Anti-SRP</td>
<td>JDM with profound myositis & cardiac disease</td>
</tr>
<tr>
<td>Anti-Mi-2</td>
<td>JDM with good prognosis</td>
</tr>
</tbody>
</table>

Antiphospholipid antibodies
- Heterogeneous group of antibodies directed against cell membrane phospholipids
- Include lupus anticoagulant, anticardiolipin, anti-β2-glycoprotein I
- Associated with increased risk of arterial or venous thrombosis (but paradoxically prolongs laboratory PTT)
- May be produced due to primary antiphospholipid antibody syndrome (APS) or secondary to SLE, other autoimmune diseases, infection or drugs

Rheumatoid factor (RF)
- IgM autoantibody that reacts to Fc portion of IgG antibodies
- Present in 85% of adults with rheumatoid arthritis
- Present in only 5-10% of children with JIA
 - Helpful in classification and prognosis of JIA, but should not be used as a screening test since arthritis is a clinical diagnosis
 - Children with RF-positive polyarthriti are at higher risk of aggressive joint disease with erosions and functional disability
- RF may also be detected in chronic immune-complex mediated diseases, such as SLE, systemic sclerosis, Sjögren, mixed connective tissue disease, cryoglobulinemia and chronic infection (subacute bacterial endocarditis, hepatitis B and C, TB)

Anti-citrullinated peptide antibodies (ACCP)
- Antibodies to citrullinated peptides found in inflamed synovium
- Highly specific for rheumatoid arthritis, but often positive in older children with polyarticular Rheumatoid factor positive JIA
- Indicates increased risk of aggressive disease and progressive joint damage
Antineutrophil cytoplasmic antibodies (ANCA)

- Antibodies target antigens in cytoplasmic granules of neutrophils
- May be pathogenic by activating neutrophils, leading to perpetuation of chronic inflammation
- High sensitivity and specificity for primary small vessel systemic vasculitides

<table>
<thead>
<tr>
<th>ANCA</th>
<th>Immunofluorescence pattern</th>
<th>Antigen specificity (ELISA)</th>
<th>Disease associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-ANCA</td>
<td>Cytoplasmic</td>
<td>Proteinase-3 (PR3)</td>
<td>Granulomatosis with polyangiitis</td>
</tr>
<tr>
<td>p-ANCA</td>
<td>Perinuclear</td>
<td>Myeloperoxidase (MPO)</td>
<td>Microscopic polyangiitis, Eosinophilic granulomatosis with polyangiitis, Ulcerative colitis, Primary sclerosing cholangitis, SLE</td>
</tr>
</tbody>
</table>

Human Leukocyte Antigen (HLA) Genetics

- Many genes of the major histocompatibility complex (especially HLA class I and II genes) have been associated with rheumatic disorders

HLA B27

- HLA class I gene that is present in only 7-10% of the general population (may be higher in some First Nations groups)
- Found in 90-95% of Caucasians with ankylosing spondylitis and many patients with JIA (particularly enthesitis related arthritis and psoriatic arthritis), inflammatory bowel disease, isolated acute anterior uveitis, and reactive arthritis
- HLA B27 may play a role in the pathogenesis of inflammatory disease

HLA B51

- May be associated with Behçet disease

Additional tests

Cytokine profiling

- May be used in research contexts to qualify the inflammatory response and guide therapy
- May become more widely available in upcoming years

Fecal calprotectin

- May be measured as an indicator of underlying gastrointestinal inflammation

Genetic testing

- Often ordered to confirm diagnosis of genetic fever syndromes and other autoinflammatory disorders

Hepcidin

- Liver protein involved in iron absorption
- Used experimentally in assessment of immune response and may become part of work-up in the future
References:
2A. Approach to Childhood Joint Pain

Differential diagnosis for pain involving a single joint:

<table>
<thead>
<tr>
<th>Traumatic</th>
<th>Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soft tissue injury (e.g. strains, sprains)</td>
</tr>
<tr>
<td></td>
<td>Foreign body synovitis</td>
</tr>
<tr>
<td>Infection-related</td>
<td>Septic arthritis</td>
</tr>
<tr>
<td></td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td></td>
<td>Chronic infections, such as tuberculosis or Lyme disease</td>
</tr>
<tr>
<td></td>
<td>Reactive arthritis including post-Streptococcal reactive arthritis</td>
</tr>
<tr>
<td></td>
<td>Acute rheumatic fever</td>
</tr>
<tr>
<td></td>
<td>Toxic synovitis (transient synovitis)</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Juvenile idiopathic arthritis (JIA)</td>
</tr>
<tr>
<td></td>
<td>Chronic non-bacterial osteomyelitis</td>
</tr>
<tr>
<td></td>
<td>Behçet disease</td>
</tr>
<tr>
<td></td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td></td>
<td>Genetic autoinflammatory or hereditary fever syndromes (e.g. Familial Mediterranean fever, Pyogenic arthritis pyoderma gangrenosum and acne)</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Musculoskeletal tumors (e.g. osteoid osteoma, osteosarcoma)</td>
</tr>
<tr>
<td>Hemarthrotic</td>
<td>Traumatic</td>
</tr>
<tr>
<td></td>
<td>Coagulopathy (e.g. hemophilia)</td>
</tr>
<tr>
<td></td>
<td>Pigmented villonodular synovitis</td>
</tr>
<tr>
<td></td>
<td>Arteriovenous malformation</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Sickle cell disease (e.g. pain crisis, dactylitis)</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Overuse injury, repetitive strain injury</td>
</tr>
<tr>
<td></td>
<td>Apophysitis</td>
</tr>
<tr>
<td></td>
<td>Joint damage (e.g. prior trauma, infection, hemarthrosis or congenital anomaly)</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>Avascular necrosis (AVN)</td>
</tr>
<tr>
<td></td>
<td>Slipped capital femoral epiphysis (SCFE)</td>
</tr>
<tr>
<td></td>
<td>Osteochondritis dissecans</td>
</tr>
<tr>
<td>Pain syndrome</td>
<td>Complex regional pain syndromes (CRPS)</td>
</tr>
</tbody>
</table>

Potential investigations for pain involving a single joint:

- X-rays
- Joint aspiration and synovial fluid analysis and/or culture
- Blood work: CBC and differential, ESR, CRP
- Consider, if indicated:
 - Further infectious testing (e.g. Lyme serology, TB skin test)
 - Further imaging (e.g. ultrasound, MRI)
 - Autoimmune serology (e.g. ANA, HLA B27)
Differential diagnosis for pain involving multiple joints:

<table>
<thead>
<tr>
<th>Category</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Juvenile idiopathic arthritis (JIA)</td>
</tr>
<tr>
<td></td>
<td>Systemic lupus erythematosus (SLE)</td>
</tr>
<tr>
<td></td>
<td>Juvenile dermatomyositis</td>
</tr>
<tr>
<td></td>
<td>Scleroderma/mixed connective tissue disease/overlap syndromes</td>
</tr>
<tr>
<td></td>
<td>Systemic vasculitis (e.g. Henoch-Schönlein purpura / IgA vasculitis)</td>
</tr>
<tr>
<td></td>
<td>Inflammatory bowel disease (IBD)</td>
</tr>
<tr>
<td></td>
<td>Genetic autoinflammatory or hereditary fever syndromes</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td></td>
<td>Chronic non-bacterial osteomyelitis / chronic recurrent multifocal osteomyelitis</td>
</tr>
<tr>
<td></td>
<td>Serum sickness</td>
</tr>
<tr>
<td>Infection-related</td>
<td>Acute infections (e.g. parvovirus B19, EBV, Neisseria gonorrhoeae)</td>
</tr>
<tr>
<td></td>
<td>Chronic infections (e.g. tuberculosis (Poncet arthritis), Lyme disease)</td>
</tr>
<tr>
<td></td>
<td>Subacute bacterial endocarditis (SBE)</td>
</tr>
<tr>
<td></td>
<td>Reactive arthritis, including acute rheumatic fever (ARF)</td>
</tr>
<tr>
<td></td>
<td>Osteomyelitis and septic arthritis may rarely present with multifocal involvement</td>
</tr>
<tr>
<td>Immunological</td>
<td>Immunodeficiency associated with arthritis (e.g. Wiskott-Aldrich)</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Leukemia, lymphoma, neuroblastoma, cancers with systemic involvement</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Overuse injuries, repetitive strain injuries</td>
</tr>
<tr>
<td></td>
<td>Apophysitis</td>
</tr>
<tr>
<td></td>
<td>Hypermobility – benign or due to connective tissue disease (e.g. Ehlers-Danlos)</td>
</tr>
<tr>
<td></td>
<td>Skeletal dysplasias</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Ricketts</td>
</tr>
<tr>
<td></td>
<td>Glycogen storage disease, mucopolysaccharidios</td>
</tr>
<tr>
<td>Pain syndrome</td>
<td>Fibromyalgia</td>
</tr>
</tbody>
</table>

Potential investigations for pain involving multiple joints:

- Blood work: CBC and differential, blood film, ESR, CRP
- Infectious testing (e.g. Parvovirus B19 serology, EBV serology, throat culture, ASOT)
- Consider, if indicated:
 - Autoimmune serology (e.g. ANA, Rheumatoid factor, HLA B27)
 - Imaging (e.g. X-rays, ultrasound, MRI)
 - Urinalysis
 - Bone marrow aspirate and biopsy
What do clinical features associated with joint pain tell you about underlying diagnosis?

<table>
<thead>
<tr>
<th>If sign/symptom present...</th>
<th>Consider these disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe joint pain</td>
<td>Infection-related, malignancy, trauma, AVN, pain syndrome</td>
</tr>
<tr>
<td>Pinpoint tenderness</td>
<td>Osteomyelitis, trauma, AVN, malignancy, enthesitis, chronic non-bacterial osteomyelitis</td>
</tr>
<tr>
<td>Night pain</td>
<td>Malignancy, osteoid osteoma, benign nocturnal limb pain</td>
</tr>
<tr>
<td>Redness</td>
<td>Septic arthritis, acute rheumatic fever, reactive arthritis</td>
</tr>
<tr>
<td>Migratory joint pain</td>
<td>Leukemia, acute rheumatic fever</td>
</tr>
<tr>
<td>Non weight bearing</td>
<td>Infection, malignancy, discitis, myositis, pain syndrome</td>
</tr>
<tr>
<td>Hip pain</td>
<td>Infection-related, AVN, SCFE, malignancy, chondrolysis, transient synovitis, JIA (particularly enthesitis related arthritis)</td>
</tr>
<tr>
<td>Back pain</td>
<td>Usually benign, but consider bone or spinal cord tumour, discitis, spondylolysis/spondylolisthesis, JIA (enthesitis related arthritis), myositis, osteoporosis, CNO, pain syndrome</td>
</tr>
<tr>
<td>Periarticular pain</td>
<td>Malignancy, hypermobility, pain syndrome</td>
</tr>
<tr>
<td>Dactylitis</td>
<td>JIA (particularly enthesitis related arthritis and psoriatic arthritis), sickle cell, trauma</td>
</tr>
<tr>
<td>Clubbing</td>
<td>Cystic fibrosis, IBD, malignancy (especially lung), familial, hypertrophic osteoarthropathy</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Malignancy, systemic autoimmune rheumatologic diseases, IBD</td>
</tr>
<tr>
<td>Muscle weakness</td>
<td>Myositis, overlap syndromes, malignancy, pain-related weakness</td>
</tr>
<tr>
<td>Rash</td>
<td>Systemic autoimmune rheumatologic diseases, vasculitis, JIA (particularly systemic arthritis and psoriatic arthritis), acute rheumatic fever, Lyme disease, serum sickness, autoinflammatory syndromes</td>
</tr>
<tr>
<td>Oral ulcers</td>
<td>Vasculitis, Behçet disease, SLE, IBD, autoinflammatory syndromes</td>
</tr>
<tr>
<td>Eye pain and redness</td>
<td>Reactive arthritis, enthesitis related arthritis. IBD, Behçet disease</td>
</tr>
<tr>
<td>Nail or nail fold changes</td>
<td>Systemic autoimmune rheumatologic diseases, psoriasis, subacute bacterial endocarditis</td>
</tr>
<tr>
<td>Raynaud phenomenon</td>
<td>Systemic autoimmune rheumatologic diseases</td>
</tr>
<tr>
<td>School withdrawal</td>
<td>Pain syndrome, chronic fatigue</td>
</tr>
<tr>
<td>Travel</td>
<td>Infection-related (e.g. tuberculosis, Lyme disease, viral)</td>
</tr>
<tr>
<td>Consanguinity</td>
<td>Genetic or metabolic diseases (e.g. autoinflammatory diseases)</td>
</tr>
</tbody>
</table>

References:
A RESIDENT'S GUIDE TO PEDIATRIC RHEUMATOLOGY

2B. **Approach to Childhood Back Pain**

Differential diagnosis for back pain in children

<table>
<thead>
<tr>
<th>Category</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Juvenile idiopathic arthritis (JIA)</td>
</tr>
<tr>
<td></td>
<td>Inflammatory bowel disease (IBD)</td>
</tr>
<tr>
<td></td>
<td>Chronic non-bacterial osteomyelitis / chronic non-bacterial osteomyelitis</td>
</tr>
<tr>
<td>Infection-related</td>
<td>Acute infections (e.g. osteomyelitis, discitis, septic arthritis, epidural abscess)</td>
</tr>
<tr>
<td></td>
<td>Chronic infections (e.g. tuberculosis (Pott disease))</td>
</tr>
<tr>
<td></td>
<td>Reactive arthritis</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Musculoskeletal tumors (e.g. osteoid osteoma)</td>
</tr>
<tr>
<td></td>
<td>Leukemia, lymphoma</td>
</tr>
<tr>
<td></td>
<td>Neurofibroma</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Spondylolysis, spondylolisthesis</td>
</tr>
<tr>
<td></td>
<td>Scoliosis</td>
</tr>
<tr>
<td></td>
<td>Scheuermann disease</td>
</tr>
<tr>
<td></td>
<td>Disc prolapse</td>
</tr>
<tr>
<td></td>
<td>Degenerative disc disease</td>
</tr>
<tr>
<td>Trauma</td>
<td>Fracture</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Sickle cell pain crisis</td>
</tr>
<tr>
<td>Pain syndrome</td>
<td>Fibromyalgia</td>
</tr>
</tbody>
</table>

Potential investigations for back pain in children:

- Investigations may not be needed and depend on clinical assessment
- Consider, if indicated:
 - Imaging (e.g. X-rays, MRI)
 - Autoimmune serology (e.g. ANA, Rheumatoid factor, HLA B27)
 - Blood work (e.g. CBC and differential, ESR, CRP)

References:

2C. Approach to Fevers

Definition of fever of unknown origin:
- Temperature > 38 degrees Celsius lasting at least 8 days with no clear source of fever

Differential diagnosis for fever of unknown origin in children

Infectious	Bacterial (e.g. abscess, mastoiditis, osteomyelitis, pyelonephritis, sinusitis, typhoid fever, tuberculosis)
	Viral (e.g. Adenovirus, CMV, EBV, Enterovirus, HIV)
	Other infections including parasitic and fungal (e.g. malaria, Lyme disease, Toxoplasma, Blastomycosis)
Inflammatory	Serum sickness
	Systemic vasculitis (e.g. Kawasaki disease)
	Systemic lupus erythematosus
	Systemic arthritis/JIA
	Behçet disease
	Inflammatory bowel disease
	Genetic autoinflammatory syndromes
	Castleman syndrome
	Hemophagocytic lymphohistiocytosis (primary or secondary HLH/MAS)
	Sarcoidosis
Drug-induced	Drug fevers or intoxication
Neoplastic	Leukemia, lymphoma
	Langerhans cell histiocytosis
	Neuroblastoma
Endocrinologic	Hyperthyroidism
	Thyroiditis
	Diabetes insipidus
Other	Pancreatitis
	Factitious fevers

Potential investigations for fever of unknown origin in children:
- Investigations will depend on clinical assessment and serial re-examination
- Initial blood work: CBC and differential, blood film, electrolytes, urea, creatinine, glucose, ESR, CRP, ferritin, liver enzymes, albumin, LDH
- Urinalysis
- Initial infectious work-up: blood culture, urine culture, nasopharyngeal swab for viruses
- Consider, if indicated:
 - Imaging (e.g. X-rays, abdominal ultrasound)
 - Further infectious testing (e.g. ASOT, Monospot, cerebrospinal fluid testing)
 - Testing for immunodeficiency (e.g. complement and immunoglobulin levels)
Definition of recurrent fevers:
- At least 3 episodes of unexplained fever in a 6-month period separated by at least 7 days of good health

Differential diagnosis for recurrent fevers

<table>
<thead>
<tr>
<th>Class</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
<td>Repeated viral or bacterial infections
Viral (e.g. CMV, EBV, Parvovirus, hepatitis viruses, HIV)
Bacterial (e.g. Typhoid fever, occult dental abscess, endocarditis, Mycobacteria)
Other infections including parasitic and fungal (e.g. malaria, Borrelia, Brucellosis, Yersinia)</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Genetic autoinflammatory or hereditary fever syndromes
Periodic fever with aphthous stomatitis, pharyngitis and adenitis (PFAPA)
Systemic lupus erythematosus
Systemic arthritis/JIA
Inflammatory bowel disease
Behçet disease
Polyarteritis nodosa
Sarcoidosis
Hemophagocytic lymphohistiocytosis (primary or secondary HLH/MAS)</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Cyclic neutropenia</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Leukemia, lymphoma</td>
</tr>
<tr>
<td>Drug-induced</td>
<td>Drug fevers or intoxication</td>
</tr>
<tr>
<td>Other</td>
<td>CNS abnormality (e.g. hypothalamic dysfunction)
Castleman disease
IgG4 disease
Factitious fevers</td>
</tr>
</tbody>
</table>

Potential investigations for recurrent fevers:
- Clinical assessment during episode of fever and when well
- Fever diary including pattern of fever and associated symptoms
- Blood work during episode and when well: CBC and differential, ESR, CRP, ferritin, liver enzymes, albumin, LDH, immunoglobulins (including IgD)
- Urinalysis
- Consider, if indicated:
 o Infectious testing (e.g. blood culture, viral serology)
 o Autoimmune serology (e.g. ANA)
 o Genetic testing

References:
2D. Approach to Recurrent Oral Ulcers

Differential diagnosis for recurrent oral ulcers in children

<table>
<thead>
<tr>
<th>Category</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Inflammatory bowel disease, Celiac disease, Behçet disease, Systemic lupus</td>
</tr>
<tr>
<td></td>
<td>erythematosus, Hyperimmunoglobulinemia D syndrome (HIDS), Periodic fever,</td>
</tr>
<tr>
<td></td>
<td>aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA), Sarcoidosis</td>
</tr>
<tr>
<td>Infectious</td>
<td>Viral (e.g. Herpes simplex, Coxsackie), Reactive arthritis</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Cyclic neutropenia</td>
</tr>
<tr>
<td>Drugs</td>
<td>Azathioprine, Methotrexate, Sulfasalazine</td>
</tr>
<tr>
<td>Other</td>
<td>Aphthous stomatitis</td>
</tr>
</tbody>
</table>

What are the characteristics of oral ulcers in different inflammatory conditions?

<table>
<thead>
<tr>
<th>Condition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Painless shallow oral ulcers, typically located on roof of mouth where hard</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>and soft palate meet</td>
</tr>
<tr>
<td>Behçet disease</td>
<td>Painful aphthous ulcers anywhere in oropharynx, sometimes associated with</td>
</tr>
<tr>
<td></td>
<td>cheilitis</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>Painful aphthous ulcers or punched-out ulcers on tongue, lips, gingiva</td>
</tr>
<tr>
<td></td>
<td>and/or buccal mucosa</td>
</tr>
<tr>
<td>PFAPA</td>
<td>Painful recurrent aphthous ulcers</td>
</tr>
<tr>
<td>Hyperimmunoglobulinemia D</td>
<td>Painful aphthous ulcers with discrete margins, typically on buccal mucosa</td>
</tr>
<tr>
<td>syndrome</td>
<td></td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Painful aphthous ulcers with discrete margins, typically on buccal mucosa,</td>
</tr>
<tr>
<td></td>
<td>associated with febrile episodes</td>
</tr>
<tr>
<td></td>
<td>Painless well-circumscribed brownish red or violaceous lesions</td>
</tr>
<tr>
<td></td>
<td>(sometimes nodular), erythematous gingival enlargement, submucosal swelling</td>
</tr>
<tr>
<td></td>
<td>of palate</td>
</tr>
</tbody>
</table>

References:

2D. Additional differential diagnoses

Differential diagnosis for lymphadenopathy in children

<table>
<thead>
<tr>
<th>Category</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td></td>
<td>Systemic arthritis/JIA</td>
</tr>
<tr>
<td></td>
<td>Kawasaki disease</td>
</tr>
<tr>
<td></td>
<td>Hemophagocytic lymphohistiocytosis (primary or secondary HLH)</td>
</tr>
<tr>
<td></td>
<td>Kikuchi-Fujimoto disease</td>
</tr>
<tr>
<td></td>
<td>Castleman disease</td>
</tr>
<tr>
<td></td>
<td>Rosai-Dorfman disease</td>
</tr>
<tr>
<td></td>
<td>Monogenic autoinflammatory diseases</td>
</tr>
<tr>
<td></td>
<td>Periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA)</td>
</tr>
<tr>
<td></td>
<td>Serum sickness</td>
</tr>
<tr>
<td>Infectious</td>
<td>Viral (e.g. EBV, CMV, HIV)</td>
</tr>
<tr>
<td></td>
<td>Bacterial (e.g. Bartonella, tuberculosis)</td>
</tr>
<tr>
<td></td>
<td>Parasitic (e.g. Lyme disease)</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Lymphoma, leukemia</td>
</tr>
<tr>
<td></td>
<td>Langerhans cell histiocytosis</td>
</tr>
<tr>
<td>Other</td>
<td>Drug-induced</td>
</tr>
</tbody>
</table>

Differential diagnosis for erythema nodosum in children

<table>
<thead>
<tr>
<th>Category</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td></td>
<td>Behçet disease</td>
</tr>
<tr>
<td></td>
<td>Systemic vasculitis (e.g. polyarteritis nodosa, granulomatosis with polyangiitis)</td>
</tr>
<tr>
<td></td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td>Infectious</td>
<td>Viral (e.g. EBV, CMV, HIV)</td>
</tr>
<tr>
<td></td>
<td>Bacterial (e.g. Group A Streptococcus, Mycoplasma, Bartonella, Yersinia, tuberculosis)</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Lymphoma, leukemia</td>
</tr>
<tr>
<td></td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td></td>
<td>Renal cell carcinoma</td>
</tr>
<tr>
<td>Drug-related</td>
<td>Oral contraceptives</td>
</tr>
<tr>
<td></td>
<td>Antibiotics (e.g. sulpha drugs, penicillins, macrolides)</td>
</tr>
<tr>
<td>Other</td>
<td>Idiopathic</td>
</tr>
</tbody>
</table>
Differential diagnosis for recurrent parotitis

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious or infection-related</td>
<td>Viral: HIV (diffuse infiltrative lymphocytosis), Influenza B, mumps, EBV, CMV, Parvovirus, Paramyxovirus, Adenovirus</td>
</tr>
<tr>
<td></td>
<td>Bacterial: Streplococcal infections, Staphylococcus aureus, Bartonella, Haemophilus</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td></td>
<td>Sjögren syndrome</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Parotid tumours</td>
</tr>
<tr>
<td></td>
<td>Lymphoma</td>
</tr>
<tr>
<td>Other</td>
<td>Sialolithiasis</td>
</tr>
<tr>
<td></td>
<td>Juvenile recurrent parotitis</td>
</tr>
<tr>
<td></td>
<td>Pneumoparotid</td>
</tr>
</tbody>
</table>

Differential diagnosis for muscle weakness

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious or infection-related</td>
<td>Viral (e.g. Enterovirus, Influenza, Coxsackievirus, Echovirus, Parvovirus, Hepatitis B, HTLV)</td>
</tr>
<tr>
<td></td>
<td>Bacterial (e.g. Staphylococcus, Streptococcus)</td>
</tr>
<tr>
<td></td>
<td>Parasitic (e.g. Lyme disease, Toxoplasmosis, Trichinosis)</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Juvenile dermatomyositis</td>
</tr>
<tr>
<td></td>
<td>Juvenile polymyositis</td>
</tr>
<tr>
<td></td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td></td>
<td>Mixed connective tissue disease</td>
</tr>
<tr>
<td></td>
<td>Juvenile idiopathic arthritis</td>
</tr>
<tr>
<td></td>
<td>Systemic sclerosis</td>
</tr>
<tr>
<td></td>
<td>Overlap myositis</td>
</tr>
<tr>
<td></td>
<td>Inclusion-body myositis</td>
</tr>
<tr>
<td></td>
<td>Cancer-associated myositis</td>
</tr>
<tr>
<td></td>
<td>Focal myositis</td>
</tr>
<tr>
<td></td>
<td>Orbital myositis</td>
</tr>
<tr>
<td></td>
<td>Granulomatous myositis</td>
</tr>
<tr>
<td></td>
<td>Eosinophilic myositis</td>
</tr>
<tr>
<td></td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td></td>
<td>Autoinflammatory diseases (e.g. TNF-receptor associated periodic syndrome, Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature)</td>
</tr>
<tr>
<td>Genetic</td>
<td>Muscular dystrophy (e.g. Duchenne, Becker)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Congenital myopathies (e.g. Spinal muscular atrophy)</td>
</tr>
<tr>
<td>Other</td>
<td>Metabolic diseases with muscle involvement (e.g. mitochondrial diseases, glycogen storage diseases)</td>
</tr>
<tr>
<td></td>
<td>Endocrinopathies (e.g. thyroid-associated myopathies)</td>
</tr>
<tr>
<td></td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Toxins</td>
</tr>
<tr>
<td></td>
<td>Neuromuscular transmission disorders (e.g. myasthenia gravis)</td>
</tr>
</tbody>
</table>
Differential diagnosis for chorea and abnormal movements in children

| Inflammatory | Autoimmune encephalitis (e.g. anti-NMDA receptor associated encephalitis)
Systemic lupus erythematosus
Antiphospholipid antibody syndrome
Behçet disease
Hashimoto encephalitis
Polyarteritis nodosa
Sjögren syndrome
Celiac disease
Sarcoidosis
| --- | ---
Infectious or infection-related | Acute rheumatic fever
Lyme disease
Malaria
Neurosyphilis
Tuberculosis
Creutzfeld-Jacob disease
| Neurologic | Benign hereditary chorea
Huntington disease
Idiopathic basal ganglia calcification
Ataxia telangiectasia
Tic disorder
| Neoplastic | Paraneoplastic syndromes
Tumors with basal ganglia involvement
| Drug-related | Dopaminergic and other drugs
| Other | Porphyria
Wilson disease
Liver failure

Differential diagnosis for stroke-like presentations in children

| Inflammatory | CNS vasculitis (primary angiography-positive or secondary vasculitis)
| Structural | Arterial dissection
Fibromuscular dysplasia
Moyamoya disease
| Hematologic | Thromboembolic disease (e.g. prothrombotic condition, atherosclerosis)
Hemoglobinopathies (e.g. sickle cell disease)
| Vasospastic | Reversible vasoconstrictive syndromes
Drug-induced (e.g. cocaine)
| Genetic | Deficiency of adenosine deaminase 2 (DADA2)
Channelopathies
Connective tissue disorders (e.g. Ehlers-Danlos syndrome, Marfan syndrome)
Neurofibromatosis
| Metabolic | CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes)

© Copyright of The Hospital For Sick Children
References:
SECTION 3 – JUVENILE IDIOPATHIC ARTHRITIS

3A. Introduction to Juvenile Idiopathic Arthritis (JIA)

- JIA encompasses a group of conditions with arthritis as the common feature.
- The current classification system by the International League of Associations for Rheumatology (ILAR) recognizes 7 distinct subtypes of JIA, based on their presentation within the first 6 months:
 1. Oligoarthritis
 2. Polyarthritis (Rheumatoid Factor Negative)
 3. Polyarthritis (Rheumatoid Factor Positive)
 4. Systemic arthritis
 5. Enthesitis-related arthritis
 6. Psoriatic arthritis
 7. Undifferentiated arthritis

- Juvenile idiopathic arthritis is arthritis of unknown etiology that begins before the 16th birthday and persists for at least 6 weeks, and in which other known causes of arthritis are excluded.
- Arthritis is diagnosed in the presence of joint effusion OR two or more of the following: limited range of movement with joint line tenderness or painful range of movement.

Oligoarthritis

ILAR Criteria for Oligoarthritis

Definition: Arthritis affecting 1 to 4 joints during the first 6 months of disease

Two subcategories are recognized:
 1. Persistent oligoarthritis: Affects not more than 4 joints throughout disease course.
 2. Extended oligoarthritis: Affects more than 4 joints after the first 6 months of disease.

Exclusions:
 - Psoriasis or a history of psoriasis in the patient or first degree relative
 - Arthritis in an HLA B27 positive male beginning after 6th birthday
 - Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with IBD, or acute anterior uveitis, or history of one of these disorders in 1st degree relative
 - Presence of IgM Rheumatoid Factor on at least 2 occasions at least 3 months apart
 - Presence of systemic JIA

- Oligoarthritis is the most common subtype of JIA. The typical patient is a young girl with positive ANA who presents with a small number of swollen joints.
- The most frequent joints to be involved are knees, ankles, wrists, or elbows. Hip involvement is distinctly uncommon, especially early in disease, unless the disease develops into extended oligoarthritis or is really part of enthesitis-related arthritis.
- **ANA is positive in 60-80%** of patients (antigenic specificity is unknown for ANA in JIA).
- Oligoarticular JIA with positive ANA is associated with a higher risk of asymptomatic uveitis (see Section 11.)
Polyarthritis (Rheumatoid Factor Negative)

ILAR Criteria for Polyarthritis (Rheumatoid Factor Negative)

Definition:
- Arthritis affecting 5 or more joints during first 6 months of disease
- Negative testing for RF

Exclusions:
- Psoriasis or a history of psoriasis in the patient or first degree relative
- Arthritis in an HLA B27 positive male beginning after 6th birthday
- Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with IBD, or acute anterior uveitis, or history of one of these disorders in 1st degree relative
- Presence of IgM Rheumatoid Factor on at least 2 occasions at least 3 months apart
- Presence of systemic JIA

- Children with RF negative polyarthritis are frequently younger and have a better prognosis than those with RF positive disease.
- ANA is positive in 25% of patients.
- Joint involvement is frequently symmetrical, affecting large and small joints alike.
- Less than 50% of patients go into spontaneous remission, and long-term sequelae are frequent, especially with hip and shoulder involvement.

Polyarthritis (Rheumatoid Factor Positive)

ILAR Criteria for Polyarthritis (Rheumatoid Factor Positive)

Definition:
- Arthritis affecting 5 or more joints during first 6 months of disease
- 2 or more positive tests for RF at least 3 months apart during first 6 months of disease

Exclusions:
- Psoriasis or a history of psoriasis in the patient or first degree relative
- Arthritis in an HLA B27 positive male beginning after 6th birthday
- Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with IBD, or acute anterior uveitis, or history of one of these disorders in 1st degree relative
- Presence of systemic JIA

- Patients with RF positive polyarthritis share many characteristics with adults with rheumatoid arthritis. All patients, by definition, are RF positive, many are positive for anti-CCP antibodies and ANA is positive in 75%.
- This affects mostly adolescent girls. The clinical symptoms are similar to the adult disease with symmetrical polyarthritis especially involving the PIP joints and MCP joints.
- Children may develop rheumatoid nodules and similar complications to adult disease, including joint erosions and Felty syndrome (neutropenia and splenomegaly).
Systemic Arthritis

ILAR Criteria for Systemic Arthritis

Definition:
- Arthritis affecting 1 or more joints
- Associated with or preceded by fever of at least 2 weeks’ duration that is documented to be daily, or “quotidian” for at least 3 days
- Accompanied by 1 or more of:
 - Evanescent (non-fixed) erythematous rash
 - Generalized lymph node enlargement
 - Hepatomegaly and/or splenomegaly
 - Serositis

Exclusions:
- Psoriasis or a history of psoriasis in the patient or first degree relative
- Arthritis in an HLA B27 positive male beginning after 6th birthday
- Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with IBD, or acute anterior uveitis, or history of one of these disorders in 1st degree relative
- Presence of IgM Rheumatoid Factor on at least 2 occasions at least 3 months apart

- The typical symptoms of systemic JIA include:
 - Once or twice daily fever spikes to >38.5°C, which then return to baseline or below. Children are usually acutely unwell during fever episodes.
 - Salmon-coloured, evanescent rash accompanying the fever, occasionally pruritic
 - Lymphadenopathy and hepatosplenomegaly
 - Arthritis may develop later (e.g. usually within the first year of fever) and is usually polyarticular, affecting knees, wrists and ankles, but cervical spine and hip involvement also occurs.

- An infectious work-up should be done and bone marrow aspirate strongly considered before starting corticosteroid treatment.

- Systemic JIA is associated with macrophage activation syndrome, a potentially life threatening inflammatory complication (see Section 13.)

Enthesitis Related Arthritis

ILAR Criteria for Enthesitis Related Arthritis

Definition:
- Arthritis and enthesitis
- Or, arthritis or enthesitis with at least 2 of the following:
 - Presence or history of sacroiliac joint tenderness and/or inflammatory back pain
 - Presence of HLA B27 antigen
 - Onset of arthritis in a male over 6 years of age
 - Acute (symptomatic) anterior uveitis
 - History of ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with inflammatory bowel disease, or acute anterior uveitis in a first-degree relative

Exclusions:
- Psoriasis or a history of psoriasis in the patient or first degree relative
- Presence of IgM Rheumatoid Factor on at least 2 occasions at least 3 months apart
- Presence of systemic JIA
• Enthesitis related arthritis (ERA) typically occurs in boys, usually over 6 years of age, with a familial predilection.
• The hallmark of this type of arthritis is enthesitis (inflammation of the insertion sites of tendons, ligaments and fascia). ERA commonly affects the lower extremities, including the hips. Axial involvement (involvement of the sacroiliac joints and/or spine) typically develops later.
• Other manifestations include tarsitis (diffuse inflammation of tarsal joints and surrounding tendon sheaths) and dactylitis (sausage-shaped swelling of entire digit).
• Symptomatic anterior uveitis may develop in children with ERA and this usually presents with significant eye pain and redness, which may be unilateral.

<table>
<thead>
<tr>
<th>Common sites of enthesitis in the lower body *</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>A. Insertions of plantar fascia</td>
</tr>
<tr>
<td>B. Insertions of quadriceps and patellar tendons</td>
</tr>
<tr>
<td>C. Insertion of Achilles tendon</td>
</tr>
</tbody>
</table>

Psoriatic Arthritis

ILAR Criteria for Psoriatic Arthritis

Definition:
- Arthritis and psoriasis
- Or, arthritis and at least 2 of the following:
 - Dactylitis
 - Nail-pitting or onycholysis
 - Psoriasis in a first-degree relative

Exclusions:
- Arthritis in an HLA B27 positive male beginning after 6th birthday
- Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with IBD, or acute anterior uveitis, or history of one of these disorders in 1st degree relative
- Presence of IgM Rheumatoid Factor on at least 2 occasions at least 3 months apart
- Presence of systemic JIA
Psoriatic arthritis can occur before or after manifestation of psoriasis. In fact, children may be re-classified as having psoriatic arthritis if they develop psoriasis after their arthritis is diagnosed.

Psoriatic arthritis is typically asymmetric, and involves both large and small joints. A clinical hallmark is dactylitis, which is caused by simultaneous inflammation of the flexor tendon and synovium, leading to the typical “sausage digit” appearance.

Undifferentiated Arthritis

ILAR Criteria for Undifferentiated Arthritis

Definition:
- Arthritis that fulfills criteria in no category or in 2 or more of the above categories

References:

3B. Approach to Treatment of JIA

Goals of therapy:
1. Eliminate inflammation with goal to achieve clinical remission
2. Prevent joint damage
3. Promote normal growth and development
4. Maintain normal function and optimize quality of life
5. Minimize medication toxicity

Multidisciplinary approach is part of comprehensive JIA management

Occupational and physical therapists play an important role in treating JIA

Psychosocial aspects of disease must be recognized and addressed

Initial therapy with an NSAID may be started by a patient's primary care physician; however, a referral should be made to a pediatric rheumatologist as quickly as possible

The goal of treatment is complete remission – rapid escalation of therapy may be required to achieve this goal

Careful monitoring by an eye care provider is essential to assess for chronic anterior uveitis, especially in patients with oligoarthritis and positive ANA

Surveillance joint X-rays should not be ordered routinely to monitor disease activity, but may be used as needed to assess for joint damage (highlighted in *Choosing Wisely: Pediatric Rheumatology Top 5 by American College of Rheumatology*)

Potential algorithms for treatment of oligoarthritis, polyarthritis and systemic JIA are included in the following pages
An Algorithm for Treatment of Oligoarthritis

1. Oligoarticular arthritis
 - NSAID or Intra-Articular Corticosteroid injection (IAC) with Triamcinolone hexacetonide
 - Improvement
 - Inadequate response
 - Follow and, if no IAC, continue NSAID
 - Remission
 - Recurrence
 - Remission
 - Recurrence

2. Persistent oligoarticular arthritis
 - Evolves into polyarticular arthritis
 - Intermittent IAC, or consider adding disease-modifying drug
 - Remission
 - Inadequate response
 - Consider biologic agent
 - Management same as polyarticular JIA (see next algorithm)
 - Remission
 - Inadequate response
An Algorithm for Treatment of Polyarthritis

Polyarthritis

NSAID with or without Intra-Articular Corticosteroid injections (IAC)
Consider using disease-modifying drug, such as methotrexate, as part of initial therapy for moderate to severe polyarthritis

Improvement
Continue NSAID and follow
Remission
Recurrence

Inadequate response
Add disease-modifying drug, such as methotrexate or leflunomide

Improvement
Continue therapy and follow
Remission
Recurrence

Inadequate response
Optimise disease-modifying drug
Consider IAC or low dose oral corticosteroids as bridging therapy

Improvement
Continue therapy and follow
Remission
Recurrence

Inadequate response
Consider adding anti-TNF therapy

If inadequate response, consider switch to different anti-TNF agent or other biologic agent (e.g. abatacept, tocilizumab)
An Algorithm for Treatment of Systemic JIA

Systemic arthritis

Mild to moderate disease

NSAID and/or corticosteroids and/or anakinra

Improvement

Continue therapy and follow

Remission

Recurrence

Moderate to severe disease

Corticosteroids and/or biologic agent, such as anti-IL-1 or anti-IL-6 therapy

Improvement

Continue therapy and follow

Remission

Recurrence

Add or change biologic anti-IL-1 or anti-IL-6 agent

Remission

Recurrence

Change biologic therapy or consider methotrexate, leflunomide, or anti-TNF agent, or abatacept if prominent arthritis

References

SECTION 4. SYSTEMIC LUPUS ERYTHEMATOSUS & RELATED CONDITIONS

4A. Systemic Lupus Erythematosus (SLE)

- Multi-system inflammatory disease characterized by autoantibody and immune-complex mediated inflammation of blood vessels and connective tissues
- 15-20% of cases of SLE are diagnosed before 16 years of age
- Female predominance, especially in adolescence and adulthood
- Ethnic predilection in Blacks, Hispanics, and Asians
- Positive family history of SLE in 10%

1997 American College of Rheumatology (ACR) Classification Criteria for SLE

Need ≥ 4/11 of following criteria:

- Malar rash (butterfly rash sparing nasolabial folds)
- Discoid lupus rash*
- Photosensitivity
- Oral or nasal mucocutaneous ulcerations (usually painless)
- Non-erosive arthritis involving two or more peripheral joints
- Nephritis (characterized by proteinuria and/or cellular casts)
- CNS involvement (characterized by seizures and/or psychosis)
- Serositis (pleuritis or pericarditis)
- Cytopenia (thrombocytopenia, lymphopenia, leukopenia, hemolytic anemia with reticulocytosis)
- Positive ANA
- Positive immunoserology (anti-dsDNA, anti-Sm, antiphospholipid antibodies)

*Uncommon in children

- 1997 ACR Classification criteria were designed to identify a homogeneous population of SLE patients for research studies. However, the presence of ≥ 4 criteria is highly sensitive and specific for SLE (>95%) and so the criteria are widely used for diagnosis
- Other clinical features of SLE not included in above classification criteria:
 - Constitutional symptoms – fevers, fatigue, weight loss, anorexia
 - Other rashes (e.g. annular erythema, maculopapular or linear (nonspecific) rash, bullous lupus (rare), palmar/plantar/periungual erythema, livedo reticularis, or vasculitic rash)
 - Alopecia classically in the frontal area, but can be diffuse
 - Polyarthralgia, myalgia, and/or myositis
 - Raynaud phenomenon (see Section 5A)
 - Lymphadenopathy
 - Hepatomegaly, splenomegaly
 - Hypertension
 - Decreased concentration and cognitive dysfunction, stroke, mood disorder, headache
 - Pneumonitis, pulmonary hemorrhage
 - Myocarditis, Libman-Sacks endocarditis
Other common laboratory features of SLE:
- Elevated ESR with normal CRP (except high CRP in infection and serositis)
- Low complement (C3, C4) levels
- Elevated IgG levels
- Other autoantibodies: anti-Ro, anti-La, anti-RNP, Rheumatoid factor

Presentation of SLE is not always “classic” → need to consider this diagnosis in adolescent females with polyarthritis; fever, rash and constitutional symptoms; ITP with positive ANA; unusual arterial or venous thrombosis; or chorea; may be accomplished by MAS at onset or anytime during course

Treatment
- Use minimum required treatment to maintain clinical and laboratory quiescence
- More aggressive treatment used for more severe organ involvement
- Hydroxychloroquine (Plaquenil)
 - Considered standard therapy for SLE
 - Proven efficacy in decreasing frequency and severity of disease flares
 - Improves serum lipid profile
 - May be helpful with anti-phospholipid antibodies
- Corticosteroids
 - Often used in initial therapy for SLE with dose depending on severity and organ involvement
 - Pulse therapy is used for severe lupus nephritis, hematologic crisis, CNS disease or other life or organ-threatening manifestations
- Azathioprine
 - Typically used for hematologic and renal manifestations
- Mycophenolate mofetil
 - Used for hematologic, renal and CNS manifestations
- Cyclophosphamide
 - Used for severe renal and CNS manifestations
- Rituximab
 - Used for resistant thrombocytopenia
- Belimumab
 - Adjunctive therapy for mild/moderate SLE (trials excluded those with severe CNS and renal involvement)

Course and Outcomes
- Relapsing and remitting course of disease
- 10 year survival >90%
- Most deaths related to infection, renal, CNS, cardiac, and pulmonary disease
- Additional morbidity related to disease and/or treatment:
 - Early-onset coronary artery disease
 - Bone disease → osteopenia, avascular necrosis
 - Malignancy
- Childhood-onset SLE vs. adult-onset SLE
 - Children have more active disease at presentation and over time
 - Children more likely to have active renal disease
 - Children receive more intensive drug therapy and sustain more long-term damage
4B. **Neonatal Lupus Erythematosus (NLE)**

- Disease of developing fetus and newborn characterized by transplacental passage of maternal autoantibodies
- Pathogenesis linked to maternal anti-Ro and anti-La antibodies
- Presence of autoantibodies is necessary but not sufficient to cause NLE since many mothers with autoantibodies deliver healthy, unaffected infants
- Mothers of infants with NLE may have SLE, Sjögren syndrome, or other autoimmune diseases. However, many mothers may be healthy with no known autoimmune disease

- Incidence of NLE is 1-2% in children of mothers with anti-Ro and/or anti-La antibodies
- Higher risk for subsequent children once one child has been affected (e.g. 16% of subsequent siblings of child with congenital heart block)

- **Clinical features**
 - **Cardiac**
 - Most important and severe manifestation is complete congenital atrioventricular (AV) heart block
 - Complete heart block is associated with significant morbidity and mortality (congestive heart failure, fetal hydrops, intrauterine death)
 - Other manifestations include less severe conduction abnormalities, carditis
 - **Skin**
 - Classic NLE rash is annular, erythematous papulosquamous rash with fine scale and central clearing
 - Predilection for face and scalp (not malar distribution)
 - Typically photosensitive
 - Dermatitis may be present at birth, but more commonly develops within first 6 weeks of life
 - New lesions appear for several months, but rarely develop after 6 months and typically heal without scarring
 - Telangiectasias may develop starting at 6-12 months of age, may not be in areas affected by previous rash
 - **Hematologic**
 - Thrombocytopenia is most common
 - Neutropenia and anemia are less common
 - Usually resolve without sequelae and rarely require treatment
 - Neutropenia is not typically associated with increased risk of infection
 - **Hepatic**
 - Asymptomatic cholestatic hepatitis with mild to moderately elevated liver enzymes
 - Hepatomegaly and less commonly splenomegaly
 - May be the only manifestation of NLE
Typically resolves before 6 months without treatment
- Neurologic
 - Reported CNS manifestations include macrocephaly, hydrocephalus, spastic paraparesis, asymptomatic neuroimaging abnormalities, and vasculopathy
 - Clinical significance still unclear
 - Important to monitor head circumference

- Treatment
 - If fetal bradycardia found during pregnancy, require fetal echocardiography to assess for heart block and endocardial fibroelastosis (EFE) and may require treatment with Dexamethasone/Betamethasone ± sympathomimetics
 - Pacemaker may be required soon after birth for neonates with complete heart block
 - Classic NLE rash does not require treatment since rash will completely resolve; Corticosteroids may hasten healing, but may increase risk of telangiectasias
 - Severe cytopenias may require treatment with IVIG
 - Future pregnancies require expectant management with fetal heart rate monitoring and mothers with autoantibodies may be treated with Hydroxychloroquine

References:

4C. Drug-Induced Lupus

- Development of lupus-like symptoms that is temporally related to continuous drug exposure (>1 month) and that resolves with cessation of the offending drug
- Usually accompanied by serologic findings of positive ANA as well as anti-histone antibodies (in approximately 90% of patients)
- However, anti-histone antibodies can also be found in patients with SLE
- Variable time from drug exposure to onset of symptoms
- Onset generally insidious
- Patients commonly present with fever, arthralgias or arthritis, myalgias and serositis
- Usually mild, although life threatening disease has been reported
- Rarely involve classic malar or discoid rash, oral ulcers or major organ involvement
- Laboratory findings may include mild cytopenias, high ESR
- Drugs that have been implicated in drug-induced lupus include: Minocycline, anticonvulsants, Hydralazine, and biologic agents that target Tumor Necrosis Factor (TNF)
- Treatment
 - Stop the offending drug
 - Corticosteroids may be used for moderate to severe manifestations (e.g. cardiac tamponade)

References:
4D. Antiphospholipid Syndrome (APS)

- Systemic autoimmune disorder characterized by recurrent arterial and/or venous thrombosis and elevated levels of antiphospholipid antibodies
- Primary APS if occurs without underlying disease
- Secondary APS due to SLE, other autoimmune diseases, drugs or viral infections (e.g. HIV)
- Venous thrombosis in ~60%, arterial thrombosis in ~30%, small vessel thrombosis in ~5%, mixed thrombosis in ~2%
- Thrombotic manifestations are most common, followed by hematologic, skin and non-thrombotic neurologic manifestations

Adapted Classification Criteria for Antiphospholipid Syndrome in Pediatric Patients

Clinical criteria
- Vascular thrombosis: ≥1 clinical episode of arterial, venous, or small vessel thrombosis in any tissue or organ confirmed objectively by validated criteria

Laboratory criteria
- Lupus anticoagulant on ≥ 2 occasions >12 weeks apart
- Anticardiolipin antibody (IgG and/or IgM isotype) in medium or high titre on ≥ 2 occasions, at least 12 weeks apart
- Antibodies to β2-glycoprotein I (IgG and/or IgM isotype) in medium or high titre on ≥ 2 occasions >12 weeks apart

Definite APS is considered to be present if the clinical criterion and at least 1 of the laboratory criteria are met

- Deep venous thrombosis is the most common type of venous thrombosis, while stroke is the most common type of arterial thrombosis (see Section 2: Differential Diagnosis of stroke-like presentations in children)

- Additional clinical features of APS:
 - Livedo reticularis, Raynaud phenomenon, and skin ulcers
 - Cardiac valve disease (Libman-Sachs endocarditis)
 - Chorea
 - Seizures
 - Transient cerebral ischemia
 - Transverse myelopathy

- Additional laboratory features of APS:
 - Thrombocytopenia
 - Hemolytic anemia
 - Leukopenia and/or lymphopenia
 - Additional antibodies to prothrombin, annexin, and/or other phospholipids
 - False positive VDRL

- Treatment
 - If primary, treat as a disorder of coagulation
 - If secondary, treat underlying disorder (often using Corticosteroids)
Anticoagulation using heparin (e.g. low molecular weight heparin (LMWH)) is usually required at least initially, and patients could require LMWH or warfarin therapy lifelong.

- Consider anti-platelet agents (e.g. ASA)
- May consider Rituximab as direct therapy to target pathogenic autoantibodies in APS

References:
SECTION 5 – SYSTEMIC VASCULITIS

5A. Introduction to Vasculitis

- Group of multi-system inflammatory diseases characterized by inflammation and necrosis of blood vessels, resulting in vessel occlusion and tissue ischemia

- Consider vasculitis when:
 - Unexplained prolonged constitutional symptoms (fever, weight loss, fatigue)
 - Multiple organ system involvement
 - CNS (headache, seizures, stroke) and/or PNS (mononeuritis)
 - Cardiac (pericarditis, myocarditis, myocardial infarction)
 - Vascular (chronic vascular insufficiency, vascular bruits, claudication)
 - Pulmonary (hemorrhage, nodules, cavities, infiltrates)
 - Renal (nephritis, nephrotic syndrome, hypertension, rapidly progressive renal failure)
 - Ophthalmologic (episcleritis, iritis, panuveitis, retinitis)
 - ENT (chronic sinusitis, epistaxis, chronic otitis, hearing loss, chondritis)
 - GI (ischemic abdominal pain)
 - MSK (arthritis, arthralgia, myalgias, calf pain)
 - Skin (palpable purpura, nodules, livedo, urticaria, ulcers)

<table>
<thead>
<tr>
<th>Classification of vasculitis based on size of vessel involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large vessel vasculitis</td>
</tr>
<tr>
<td>Takayasu arteritis</td>
</tr>
<tr>
<td>Giant cell arteritis (older adults)</td>
</tr>
<tr>
<td>Medium vessel vasculitis</td>
</tr>
<tr>
<td>Kawasaki disease</td>
</tr>
<tr>
<td>Polyarteritis nodosa (systemic, cutaneous)</td>
</tr>
<tr>
<td>Small vessel vasculitis</td>
</tr>
<tr>
<td>ANCA – associated vasculitis</td>
</tr>
<tr>
<td>Microscopic polyangiitis</td>
</tr>
<tr>
<td>Granulomatosis with polyangiitis (previously Wegener granulomatosis)</td>
</tr>
<tr>
<td>Eosinophilic granulomatosis with polyangiitis (previously Churg-Strauss Syndrome)</td>
</tr>
<tr>
<td>Immune complex vasculitis</td>
</tr>
<tr>
<td>IgA vasculitis (Henoch-Schonlein purpura)</td>
</tr>
<tr>
<td>Cryoglobulinemia</td>
</tr>
<tr>
<td>Hypocomplementemic urticarial vasculitis</td>
</tr>
<tr>
<td>Variable vessel vasculitis</td>
</tr>
<tr>
<td>Behçet disease</td>
</tr>
<tr>
<td>Cogan syndrome</td>
</tr>
<tr>
<td>Other vasculitis</td>
</tr>
<tr>
<td>Primary CNS vasculitis (see Section 5)</td>
</tr>
<tr>
<td>Primary cutaneous vasculitis</td>
</tr>
<tr>
<td>Vasculitis secondary to drugs, infection (e.g. hepatitis B virus, Parvovirus), or malignancy</td>
</tr>
<tr>
<td>Monogenic disease causing vasculitis (e.g. Deficiency of Adenosine Deaminase 2)</td>
</tr>
</tbody>
</table>
• Investigations
 o Look for end-organ damage (eyes, skin, heart, lungs, kidneys, nervous system)
 o Look for triggers or underlying disease (drugs, malignancy, infection, CTD)
 o Inflammatory markers (CRP, ESR)
 o Immune serology (ANA, ANCA)
 o Tissue biopsy (histopathology & immunofluorescence)
 o Angiography (conventional; magnetic resonance; computed tomography); vessel wall itself may be assessed using magnetic resonance or computed tomography

• Treatment
 o Depends on specific disease, organ involvement, severity
 o Immunosuppressive agents plus supportive therapy

• Potential complications
 o Acute: organ failure (renal, pulmonary, cardiac), hemorrhage (pulmonary, GI), thrombus (renal, pulmonary, coronary, cerebral, GI vessels), infection (often treatment-related)
 o Chronic: hypertension, renal failure, pulmonary insufficiency, hearing loss, saddle nose deformity, subglottic stenosis, hemiplegia, neuropathy

References:

5B. **Takayasu arteritis**

<table>
<thead>
<tr>
<th>2008 EULAR/PRINTO/PRES Classification Criteria for Childhood Takayasu arteritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiographic abnormalities of the aorta or its main branches and pulmonary arteries showing aneurysm/dilatation, narrowing, or thickened arterial wall (mandatory criterion)</td>
</tr>
<tr>
<td>Plus ≥ 1/5 of the following:</td>
</tr>
<tr>
<td>• Peripheral pulse deficit or claudication (focal muscle pain induced by physical activity)</td>
</tr>
<tr>
<td>• Discrepancy of four limb systolic BP >10 mm Hg in any limb</td>
</tr>
<tr>
<td>• Bruits</td>
</tr>
<tr>
<td>• Hypertension (>95th percentile for height)</td>
</tr>
<tr>
<td>• Acute phase reactants (ESR >20 or increased CRP)</td>
</tr>
</tbody>
</table>

• Large vessel vasculitis involving the aorta and its branches (thoracic, abdominal, carotid)
• Chronic, relapsing disease
• Initially can present as non-specific inflammatory illness with fever
• Evolution to chronic, fibrotic phase with signs and symptoms of chronic vascular insufficiency (pulse deficit, claudication, BP discrepancy, bruits)
Investigations
- Magnetic resonance angiography useful to show extension of disease and vessel wall inflammation; often used to follow disease (less invasive than conventional angiography)
- Rule out associated TB infection (PPD, chest X-ray)

Treatment
- Depends on degree of inflammation
- If “active” disease (by acute phase reactants +/- wall enhancement on MRA):
 - Corticosteroids plus second line agent
 - Second line agent options include Methotrexate, Mycophenolate mofetil, Infliximab or Adalimumab
 - May also use Tocilizumab, Cyclophosphamide, or Rituximab if refractory disease
- If “inactive” disease:
 - Manage end-organ manifestations (medical therapy +/- vascular surgery)

References:

5C. Kawasaki disease (KD)

<table>
<thead>
<tr>
<th>Diagnostic Criteria for Kawasaki disease*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever persisting for ≥5 days</td>
</tr>
<tr>
<td>Plus ≥ 4/5 of the following:</td>
</tr>
<tr>
<td>- Changes in peripheral extremities (edema/erythema) or perineal area (erythema/peeling)</td>
</tr>
<tr>
<td>- Polymorphous exanthem</td>
</tr>
<tr>
<td>- Bilateral conjunctival injection, non-exudative</td>
</tr>
<tr>
<td>- Changes of lips and oral cavity (injection of oral and pharyngeal mucosa, fissured lips, strawberry tongue)</td>
</tr>
<tr>
<td>- Cervical lymphadenopathy (frequently unilateral, ≥1.5 cm)</td>
</tr>
</tbody>
</table>

* Other ways to make diagnosis of KD:
 a) In presence of fever and coronary artery involvement on echo, <4/5 criteria sufficient
 b) Incomplete KD diagnosed if ≥ 5 days of fever with 2 or 3 features (common in infants, who are at higher risk of coronary artery involvement)
 c) Atypical KD diagnosed if KD with an unusual manifestation (e.g. renal failure)

- Medium vessel vasculitis, with predilection for coronary arteries
- Most common between 1 and 5 years of age
Most common cause of acquired heart disease in children in developed countries
- May be triggered by infectious agent (viral and/or bacterial super-antigen implicated)
- Probable genetic predisposition; polygenic with genes identified that influence risk of KD and coronary artery involvement
- Common clinical manifestations: irritability (aseptic meningitis), arthritis (at onset or delayed), sterile pyuria (urethritis), gastroenteritis (abdominal pain, vomiting, diarrhea), uveitis, periungual desquamation in weeks 2 or 3
- Uncommon features include gallbladder hydrops, GI ischemia, jaundice
- Cardiac involvement: myocarditis, pericarditis, cardiac failure, valvular regurgitation
- May be complicated by macrophage activation syndrome (MAS), DIC
- KD shock syndrome characterized by hypotension or poor perfusion
- Coronary artery disease in KD
 - Major concern is the development of coronary artery aneurysms, which most commonly occurs at 4-6 weeks after the acute illness
 - Risk factors: males, infants < 1 year or >9 years of age, prolonged fever, Asian or Hispanic ethnicity, thrombocytopenia, hyponatremia
- Investigations
 - Leukocytosis with left shift, normocytic anemia, elevated ESR/CRP, hypoalbuminemia, hyponatremia, may have elevated transaminases
 - Thrombocytosis in second week of illness with return to normal by 4-8 weeks
 - Echoardiogram required at the time of diagnosis and 6 weeks later
- Treatment
 - See treatment algorithm on next page
 - Target treatment within 10 days of fever onset
 - IVIG 2g/kg (unequivocally reduces the occurrence of coronary artery aneurysms)
 - If still febrile 24-36 hours after IVIG → second dose of IVIG
 - Consider monitoring for IVIG-related hemolysis with CBC, blood film, reticulocytes and direct antiglobulin test 5-7 days after IVIG
 - ASA
 - Historically, started with high-dose ASA 80-100 mg/kg/day (anti-inflammatory) until afebrile x 24 hours, then switched to low-dose 3-5 mg/kg/day (anti-platelet)
 - Many centres now start with low-dose ASA 3-5 mg/kg/day
 - Myocarditis, MAS → add Corticosteroids
 - If large coronary aneurysm → Abciximab (glycoprotein IIb/IIIa receptor inhibitor) in acute or subacute phase; long-term antiplatelet (+ Heparin or Warfarin if giant aneurysm)
- Prognosis
 - In-hospital mortality 0.17% (all cardiac-related)
 - ~2% risk of recurrent KD
 - Without treatment, coronary artery aneurysms occur in ~25% of patients → reduced to ~4% if IVIG treatment within 10 days
 - If coronary artery aneurysm → risk for thrombosis, obstruction and stenosis, ventricular dysfunction/arrhythmia, early atherosclerosis, myocardial infarction (highest if ≥8 mm)
An algorithm for treatment of Kawasaki disease

References:
5D. Polyarteritis nodosa (PAN)

2008 EULAR/PRINTO/PRES Classification Criteria for Childhood PAN

Systemic illness characterized by:

- Histological findings of necrotizing vasculitis in medium or small sized arteries, or
- Angiography showing aneurysm, stenosis or occlusion of medium or small sized arteries

Plus ≥ 1/5 of the following:

- Skin involvement (livedo reticularis, tender subcutaneous nodules, superficial skin infarctions, or deep skin infarctions)
- Myalgia or muscle tenderness
- Hypertension (>95th percentile for height)
- Peripheral neuropathy (motor mononeuritis multiplex, sensory peripheral neuropathy)
- Renal involvement (proteinuria >0.3 g in 24 hrs, hematuria, red blood cell casts, impaired renal function)

Systemic PAN

- Very rare in childhood
- Additional clinical features
 - Constitutional symptoms
 - Prolonged fever
 - Testicular pain or tenderness
 - Stroke or coronary artery disease
 - Bruits
 - Ischemic abdominal pain

- Laboratory features
 - Leukocytosis, thrombocytosis, and elevation of ESR and CRP
 - Positive hepatitis B serology can occur, although it is unusual

- Treatment
 - Prednisone plus second line agent (e.g. Methotrexate, Cyclophosphamide, Azathioprine, Mycophenolate mofetil)
 - Plasma exchange may be considered in acute life-threatening disease

Cutaneous PAN

- Clinical syndrome characterized by absence of major organ involvement, but may involve skin, joints, muscles and peripheral nervous system
- Skin findings (tender subcutaneous nodules, livedo reticularis, superficial or deep ulcers)
- Additional clinical features
 - Constitutional features
 - Myalgia, arthralgia, non-erosive arthritis
 - Peripheral neuropathy
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

- Investigations
 - Diagnosis requires deep skin biopsy to get small muscular arteries showing necrotizing, non-granulomatous vasculitis
 - Negative testing for ANCA
 - May be associated with serological (ASOT) or culture evidence of Streptococcal infection

- Treatment
 - Corticosteroids with rapid wean or another second line agent (e.g. IVIG, Methotrexate)
 - Penicillin treatment (if proven associated Streptococcal infection) and prophylaxis

Deficiency of Adenosine Deaminase 2 (DADA2)

- Consider in differential diagnosis of polyarteritis nodosa
- Recently identified monogenic autoimmune recessive disease (mutations in CECR1 gene) leading to vasculitis
- Clinical features are variable, depending on mutation type and number of affected alleles
- Common features:
 - Recurrent lacunar stroke (ischemic or hemorrhagic) with onset at young age
 - Fever
 - Vasculitis, including polyarteritis nodosa
 - Livedo reticularis
 - Hepatosplenomegaly
 - Various ophthalmologic manifestations

- Investigations
 - Elevated inflammatory markers
 - Diagnosis confirmed through genetic testing

- Treatment
 - Not established
 - Consider disease modifying medications and biologic agents for inflammatory component

References:
5E. Granulomatosis with Polyangiitis (GPA, formerly Wegener Granulomatosis)

2008 EULAR/PRINTO/PRES Classification Criteria for Childhood GPA

At least 3 of the 6 following criteria:

- Histopathology showing granulomatous inflammation within wall of artery or in perivascular or extravascular area
- Upper airway involvement (chronic purulent or bloody nasal discharge, recurrent epistaxis, nasal septum perforation, saddle nose deformity, chronic or recurrent sinus inflammation)
- Laryngo-tracheo-bronchial involvement (subglottic, tracheal or bronchial stenoses)
- Pulmonary involvement (nodules, cavities, or fixed pulmonary infiltrates)
- ANCA positive by immunofluorescence or ELISA
- Renal involvement (proteinuria >0.3 g in 24 hrs, hematuria, or red blood cell casts, impaired renal function)

- Predominantly small vessel vasculitis, characterized by granulomatous inflammation
- Generally occurs in the second decade of life, with a female preponderance
- Hallmark of GPA is triad of upper and lower respiratory tract inflammation and renal disease
- Common presenting features (in order of decreasing frequency)
 - Constitutional – fatigue, malaise, fever, weight loss
 - Pulmonary – SOB, chronic cough, hemoptysis/alveolar hemorrhage, lung nodules/cavitations/fixed infiltrates, abnormal PFTs (obstructive and restrictive)
 - ENT – nasal involvement (epistaxis, ulcers), sinusitis, otitis/mastoiditis, hearing loss, subglottic involvement
 - Renal – abnormal urinalysis, biopsy-proven GN, elevated creatinine, acute renal failure
 - MSK – arthralgia/myalgia, arthritis
 - GI – nonspecific abdominal pain, chronic nausea
 - Eye – nonspecific red eye, conjunctivitis, scleritis
 - Cutaneous – palpable purpura/petechiae
 - CNS – severe headache, dizziness

- Investigations
 - ANCA positive in ~90% of patients (~80% are c-ANCA positive with anti-PR3 positivity)

- Treatment
 - Initial therapy involves combination of Corticosteroids and a second-line agent, such as Cyclophosphamide, Rituximab or Methotrexate (choice depends on disease severity)
 - Plasma exchange may be used as part of induction therapy for children with life-threatening disease
 - Maintenance therapy with Methotrexate, Azathioprine, Rituximab, or Corticosteroids
 - May consider endoscopic intervention for subglottic stenosis and endobronchial disease

- Prognosis
 - Significant morbidity associated with disease and medications
 - Severe pulmonary disease requiring mechanical ventilation in 11%
 - Dialysis required in 11%
References:

5F. Microscopic Polyangiitis (MPA)

- No 2008 EULAR/PRINTO/PRES classification criteria
- Pauci-immune, necrotizing, non-granulomatous small vessel vasculitis
- Rare in childhood

- Clinical features
 - Rapidly progressive, necrotizing, crescentic glomerulonephritis (90% of patients)
 - Pulmonary capillaritis leading to hemorrhage (30-60%)
 - Pulmonary-renal syndrome (30-50%)
 - Hypertension (50-60%)
 - Palpable purpura (common)
 - May have refractory anemia

- Diagnosis
 - Serology: 50-75% p-ANCA positive with anti-MPO on ELISA
 - Renal biopsy with immunofluorescence: pauci-immune glomerulonephritis

- Treatment
 - Induction: Corticosteroids + Cyclophosphamide, Methotrexate or Rituximab
 - Maintenance: Azathioprine, Methotrexate, or Rituximab

References:
5G. IgA Vasculitis (also known as Henoch-Schonlein Purpura, or HSP)

2008 EULAR/PRINTO/PRES Classification Criteria for Childhood HSP

Purpura (commonly palpable and in crops) or petechiae with lower limb predominance*

Plus ≥ 1/4 of the following:

- Diffuse abdominal colicky pain with acute onset (may include intussusceptions and gastrointestinal bleeding)
- Skin biopsy showing leukocytoclastic vasculitis with predominant IgA deposits, or kidney biopsy showing proliferative glomerulonephritis with predominant IgA deposits
- Arthritis or arthralgias of acute onset
- Renal involvement (proteinuria >0.3 g in 24 hrs, hematuria, or red blood cell casts, impaired renal function)

* If purpura in atypical distribution, demonstration of IgA deposition is required

- Most common vasculitis in children
- Often follows a respiratory infection, most commonly Group A *Streptococcus*
- Predominantly small vessel vasculitis, characterized by IgA deposition and leukocytoclastic vasculitis

Clinical features

- Cutaneous purpura (100% of patients) with palpable lesions 2-10 mm in diameter, usually concentrated on lower extremities
- Arthritis (75%) usually affecting knees and ankles, associated with painful oedema
- GI involvement (50-75%), including abdominal pain and intussusception
- Renal involvement (40-50%)
 - Most commonly microscopic hematuria
 - Proteinuria accompanies hematuria in 25%
 - Nephrotic syndrome in 5%
 - Renal abnormalities may not manifest initially, thus must regularly monitor blood pressure and urinalysis x 6 mos after acute illness
- Orchitis (10-20% of males) associated with pain and swelling

No distinctive or diagnostic laboratory abnormalities

- May have elevated WBC, platelets and/or ESR; coagulation profile must be normal and thrombocytopenia should be absent
- Serum IgA increased in 50% of patients

Treatment

- Largely supportive
- NSAIDS for joint pain
- Prednisone in select patients
 - May decrease the severity and duration of GI symptoms
 - Unclear impact on risk of persistent renal disease (controversial)
 - No definite benefit for prevention of HSP recurrence
 - May be helpful for bullous lesions
If severe nephritis (e.g. nephrotic syndrome, decreased renal function, crescentic nephritis): pulse IV Methylprednisolone ± second line agent (e.g. Azathioprine, Mycophenolate mofetil, Cyclophosphamide)

- **Prognosis**
 - Usually a self-limited condition that resolves within 4 weeks (average)
 - Recurrence occurs in about 1/3 of patients
 - Long-term prognosis depends on severity of nephritis (poorer prognosis with nephrotic syndrome or if >50% crescent formation on biopsy)
 - End-stage renal disease occurs in 1-3% of patients; in ~20% of those with nephritic or nephrotic syndrome (N.B. % varies among different studies)

References:

5H. Eosinophilic Granulomatosis with Polyangiitis (formerly Churg- Strauss Syndrome)

- No 2008 EULAR/PRINTO/PRES classification criteria – very rare in children

- Granulomatous small vessel vasculitis characterized by:
 - Preceding history of “difficult to control” chronic asthma
 - Paranasal sinus abnormalities
 - Peripheral eosinophilia (≥10%) + eosinophilic infiltration on biopsy
 - Non-fixed pulmonary infiltrates
 - Peripheral neuropathy

- Additional clinical features
 - Cardiovascular (50%): Myocardial ischemia, pericarditis, cardiac failure
 - Ischemic abdominal pain
 - Cutaneous nodules

- Diagnosis
 - Biopsy (lung, skin) showing eosinophilic infiltrates and granulomas
 - Peripheral eosinophilia and increased IgE levels
 - ANCA, usually anti-MPO, present in less than 50% patients

- Treatment
 - Prednisone plus second line agent
 - Cyclophosphamide or Rituximab if cardiac, GI or neurologic involvement
References:

5J. Behçet Disease

1990 International Study Group for Behçet Disease Criteria for Diagnosis
- Recurrent oral ulcers (major or minor aphthous ulcers, or herpetiform ulceration recurring at least 3 times in 12 months)
Plus ≥ 2 of the following criteria:
- Recurrent genital ulcers (aphthous ulceration or scarring)
- Eye lesions (including anterior or posterior uveitis, cells in vitreous on slit lamp examination, or retinal vasculitis, observed by an ophthalmologist)
- Skin lesions (including erythema nodosum, pseudo vasculitis, papulopustular lesions, or acniform nodules consistent with Behçet)
- Pathergy (skin papule 2 mm or more in size developing 24 to 48 hours after oblique insertion of a 20-25 gauge needle 5 mm into the skin, generally of the forearm)

2014 International Criteria for Behçet Disease
- Ocular lesions (anterior or posterior uveitis or retinal vasculitis) • 2 points
- Genital aphthosis • 2 points
- Oral aphthosis • 2 points
- Skin lesions (erythema nodosus, pseudofolliculitis, skin aphthosis) • 1 point
- Neurologic manifestations (peripheral and central) • 1 point
- Vascular manifestations (arterial and/or venous thrombosis, phlebitis) • 1 point
- Positive pathergy test • Bonus point

Simple classification: Add points from above and score ≥4 consistent with Behçet disease

- Systemic vasculitis with characteristic oral and genital ulcers, vasculopathy and uveitis
- Among the systemic vasculitides, Behçet disease is remarkable for its ability to involve blood vessels of all sizes - small, medium, and large - on both the arterial and venous sides of the circulation
- More common in certain ethnic groups along the “Silk Route” (Turks, Greeks)
- Uncommon in children
Other clinical manifestations include:
- CNS: aseptic meningitis, encephalitis, cerebral venous sinus thrombosis, or pseudotumour cerebri
- MSK: oligoarthritis or polyarthritis
- GI: abdominal pain, diarrhea, colitis
- Vascular: arterial and/or venous thrombosis

Diagnosis
- Currently based on clinical criteria
- HLA B51 may be helpful

Treatment
- No controlled studies have been performed on children
- Corticosteroids, colchicine, thalidomide, and anti-TNF agents (e.g. Infliximab) have been shown to be helpful
- May treat isolated oral and/or genital ulcers with topical therapy, including analgesics and/or steroids

References:
SECTION 6 – INFLAMMATORY BRAIN DISEASES

6A. Introduction to Inflammatory Brain Diseases

- Inflammatory brain disease encompasses a wide range of disorders
- Clinical and diagnostic features vary depending on the underlying disease
- A broad differential diagnosis should be considered when a child presents with newly acquired neurological or psychiatric deficits

Types of inflammatory brain diseases in children:

<table>
<thead>
<tr>
<th>Vasculitis</th>
<th>Primary Angiitis of the Central Nervous System in childhood (cPACNS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Angiography-positive cPACNS: progressive and non-progressive</td>
</tr>
<tr>
<td></td>
<td>- Angiography-negative cPACNS</td>
</tr>
<tr>
<td></td>
<td>Secondary CNS vasculitis</td>
</tr>
<tr>
<td>Non-vasocentric inflammatory disorders</td>
<td>Demyelinating disorders</td>
</tr>
<tr>
<td></td>
<td>- Multiple sclerosis, acute demyelinating encephalomyelitis, optic neuritis and transverse myelitis</td>
</tr>
<tr>
<td></td>
<td>Antibody mediated inflammatory brain disease:</td>
</tr>
<tr>
<td></td>
<td>- Anti-NMDA receptor encephalitis, other autoimmune encephalitis, neuromyelitis optica,</td>
</tr>
<tr>
<td></td>
<td>Systemic inflammatory diseases with CNS involvement</td>
</tr>
<tr>
<td></td>
<td>- Systemic lupus erythematosus, Bechet disease, celiac disease, sarcoidosis, acute rheumatic fever, Hashimoto encephalitis</td>
</tr>
<tr>
<td></td>
<td>Rasmussen encephalitis</td>
</tr>
<tr>
<td></td>
<td>Neurosarcoidosis</td>
</tr>
<tr>
<td></td>
<td>Febrile infection-related epilepsy syndrome (FIRES)</td>
</tr>
</tbody>
</table>

6B. Childhood Primary Angiitis of the Central Nervous System (cPACNS)

- Currently defined by modified Calabrese criteria:
 - Clinical evidence of a newly-acquired focal or diffuse neurologic and/or psychiatric deficit in child <18 years of age, plus
 - Angiographic or histologic evidence of CNS vasculitis, plus
 - Absence of an underlying systemic condition

- 2 clinically and radiologically distinct types of cPACNS

1. **Angiography positive cPACNS** (Large-medium vessel CNS vasculitis)

 - Clinical features: headache, acute hemiparesis, hemisensory deficits, and/or fine motor deficits
 - Inflammatory markers: often normal
 - CSF: often normal
 - MRI: unilateral focal areas of acute ischemia in a vascular distribution
 - Evidence of vasculitis on angiography (conventional angiography or MRA)
 - Brain biopsy not required
Further divided into progressive and non-progressive subtypes

- Non-progressive cPACNS
 - Defined by absence of progression on imaging 3 months after initial angiography (i.e. monophasic disease)
 - More common than progressive cPACNS

- Progressive cPACNS
 - Defined by progression on neuroimaging 3 months after initial angiography
 - Presents with both focal and diffuse neurologic deficits
 - Multifocal T2 lesions on MRI, proximal and distal stenosis on angiography

2. Angiography negative cPACNS (Small vessel CNS vasculitis)

- Clinical features: systemic symptoms (fever, malaise), headache, seizures, ataxia, cognitive decline and/or behaviour changes
- Inflammatory markers: may be elevated
- CSF: more likely to have pleocytosis, elevated protein and/or elevated opening pressure compared to angiography-positive disease; oligoclonal bands may also be present
- MRI: multifocal T2 hyperintensities in both white and grey matter, lesions do not conform to large-vessel vascular territory
- By definition, angiography is negative
- Brain biopsy (ideally lesional): non-granulomatous, intramural and perivascular T lymphocytes in small arteries, arterioles, capillaries or venules

- Treatment
 - Based on type of cPACNS
 - Angiography positive cPACNS
 - Anti-coagulation with or without anti-platelet agent
 - Corticosteroids in non-progressive cPACNS may improve outcome
 - Progressive cPACNS treated with same protocol as for angiography negative cPACNS
 - Angiography negative cPACNS
 - Induction (first 6 months) using Cyclophosphamide and Corticosteroids
 - Maintenance (up to 24 months) using Mycophenolate mofetil (or Azathioprine) and Corticosteroids
 - Rehabilitation addressing cognitive, behavioural, physical and psychological deficits
 - Adjunctive therapy: PJP prophylaxis while on Cyclophosphamide; Vitamin D supplementation and ensure adequate calcium intake while on steroids

- Prognosis
 - Complications: persistent neurological deficits, seizures, cognitive disability

References:
6C. Secondary Central Nervous System Vasculitis

- Occurs in context of an underlying systemic illness
- Can occur in context of infections, as well as other systemic inflammatory and autoimmune diseases

Causes of secondary CNS vasculitis:

| Infections | Bacteria: *Mycobacterium tuberculosis, Mycoplasma pneumonia, Streptococcus pneumonia*
| | Virus: Epstein-Barr virus, Cytomegalovirus, Enterovirus, Varicella zoster virus,
| | Hepatitis C virus, Parvovirus B19, West Nile virus
| | Fungus: *Candida albicans, Actinomycosis, Aspergillus*
| | Spirochete: *Borrelia burgdorferi, Treponema pallidum*
| Inflammatory diseases | Systemic vasculitis: granulomatosis with polyangiitis, microscopic polyangiitis,
| | Kawasaki disease, polyarteritis nodosa, Behçet disease
| | Systemic lupus erythematosus
| | Juvenile dermatomyositis
| | Morphea
| | Autoinflammatory syndromes
| | Inflammatory bowel disease
| | Hemophagocytic lymphohistiocytosis
| Other | Drug-induced vasculitis
| | Malignancy-associated vasculitis

References:

6D. Autoimmune encephalitis

- Inflammation of the brain occurs as a result of antibodies directed against neuronal proteins
- Antibody targets have been increasingly identified in children over past decade and include the NMDA receptor, aquaporin 4, Dopamine-2 receptor, GABA(A) receptor, GABA(B) receptor, GAD, AMPA receptor, and m-GluR5 receptor
- Better prognosis if antibody target is extracellular or synaptic protein
- Clinical features include memory deficits, behaviour changes, psychiatric symptoms, altered mental state, seizures, and focal neurological deficits
- Investigations
 - MRI may be normal or abnormal (findings often depend on antibody)
 - Serum testing may show inflammatory changes
 - CSF often shows increased white blood cell counts
 - EEG is often abnormal with seizures, epileptiform discharges and/or slowing
 - Psychoeducational testing often shows cognitive dysfunction, including impaired memory and slow cognitive processing speeds
- Diagnosis confirmed by identification of anti-neuronal antibodies in CSF or serum
- Treatment typically involves corticosteroids, IVIG and other immunosuppressants
Anti N-methyl-D-aspartate (NMDA) receptor encephalitis

- Most common neuronal antibody mediated encephalitis syndrome in children
- Clinical features
 - Typically evolves in stages
 - Prodrome of fever and headache followed by psychiatric or behavioral manifestations, speech changes, decreased consciousness, seizures, choreoathetoid movements and eventual autonomic instability (tachycardia, fever, hypertension, hypoventilation)
- Investigations
 - Diagnosed by presence of anti-NMDA receptor antibodies in CSF or serum
 - MRI brain is frequently normal
 - CSF analysis is usually abnormal (lymphocytic pleocytosis, increased protein, or oligoclonal bands)
 - EEG is often abnormal with diffuse slowing in children and more focal findings in teenagers and adults
 - Consider imaging for ovarian or testicular teratoma (association between anti-NMDA receptor encephalitis and tumor in adults)
- Treatment
 - First line therapy includes corticosteroids, IVIG and/or plasma exchange
 - Rituximab may also be considered
- Outcome
 - 80% of patients have full recovery
 - Continued improvement may be seen up to 2 years after onset of symptoms

Neuromyelitis Optica (NMO)

- Due to antibodies to aquaporin-4
- Inflammation and demyelination mostly affecting the spinal cord and optic nerves
- Clinical features
 - Commonly present with acute optic neuritis and transverse myelitis
 - Other reported clinical features: encephalopathy, ophthalmoparesis, vertigo, nausea and vomiting, hyponatremia, inappropriate diuresis
 - Reported in association with Sjögren syndrome
- Investigations
 - Diagnosis requires identification of antibodies to aquaporin-4 in serum or CSF
 - CSF: pleocytosis and elevated protein
 - MRI: lesions in the periventricular regions of the third and fourth ventricles and in the periaqueductal grey matter
- Treatment
 - Initial therapy: corticosteroids, IVIG and/or plasma exchange
 - Maintenance with second line agent should be considered (e.g. Azathioprine, Rituximab)
- Outcome
 - Frequent relapsing course with accumulation of neurological deficits
References:

SECTION 7 – IDIOPATHIC INFLAMMATORY MYOPATHIES

7A. Juvenile Dermatomyositis (JDM)

- JDM is an autoimmune myopathy characterized on pathology by capillary vasculopathy primarily affecting skin and muscle

<table>
<thead>
<tr>
<th>Bohan and Peter Criteria for Diagnostic of Juvenile Dermatomyositis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical proximal muscle weakness</td>
</tr>
<tr>
<td>Characteristic skin changes, including Gottron papules on the dorsal surface of the knuckles and heliotrope rash over the eyelids</td>
</tr>
<tr>
<td>Elevated muscle enzymes, including CK, AST, LDH, aldolase</td>
</tr>
<tr>
<td>Abnormal EMG demonstrating denervation and myopathy</td>
</tr>
<tr>
<td>Abnormal muscle biopsy demonstrating necrosis and inflammation</td>
</tr>
</tbody>
</table>

- Recently, MRI has become an important diagnostic tool to look for muscle inflammation and to direct a site for biopsy (if needed)

- Clinical features
 - Proximal muscle weakness (which is present in 95% of patients) may be described on history as difficulty getting up from sitting or lying, difficulty climbing stairs, and frequent falls. Children may demonstrate a Gower sign on physical exam.
 - It is important to assess for 3D’s – dysphagia, dysphonia and dyspnea – that indicate severe disease.
 - Nasal voice, difficulty swallowing and choking on foods (18-44%) may indicate weakness of the palate and cricopharyngeal muscles.
 - Characteristic skin rashes include Gottron papules (57-100%), heliotrope rash (66-100%), malar rash (42-73%) and photosensitive rashes. These may be confused with psoriasis, especially given the location of Gottron papules on extensor surfaces. In severe cases, there may be skin ulceration.
 - Capillary vasculopathy can be seen using capillaroscopy to look at changes in the nail fold capillaries (91%) such as tortuosity, dilatation, and dropout.
 - Other organ systems may also be involved:
 - Arthritis (23-58%)
 - GI tract symptoms (22-37%), including dysphagia, GI ulceration, perforation
 - Lungs (interstitial lung disease)
 - Heart (cardiomyopathy) – very rare
 - Constitutional features, such as fever and fatigue, are common.
 - Anasarca can be a rare initial manifestation and is associated with treatment resistance and poor prognosis
 - Amyopathic JDM (skin features without muscle involvement) is rare in children and may represent JDM with mild muscle involvement that has not yet been identified; however, treatment to prevent future complications (e.g. calcinosis) is frequently recommended in this patient group
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

- Investigations
 - Positive ANA is common (up to 70% of patients) but not specific
 - Myositis-specific antibodies (MSA) are identified in up to 2/3 of children with JDM, but are not routinely available in all laboratories

<table>
<thead>
<tr>
<th>MSA</th>
<th>Frequency</th>
<th>Associated Clinical Characteristics</th>
</tr>
</thead>
</table>
| Anti-p155/p140 | 60% | • rash (Gottron papules, malar rash, “shawl-sign” rash)
 • photosensitivity
 • low CK levels
 • chronic illness course |
| Anti-MJ | 20% | • muscles cramps
 • dysphonia
 • high rate of hospitalization
 • monocyclic disease course |
| Anti-synthetase | 5-10% | • interstitial lung disease
 • “mechanic’s hands”
 • arthralgia
 • older age at diagnosis |
| Anti-Mi2 | 5% | • Hispanic ethnicity
 • rash (Gottron papules, heliotrope rash, malar rash)
 • high CK
 • low mortality |
| Anti-SRP | 25% | **In patients with polymyositis**
 • black race
 • severe onset
 • distal weakness
 • Raynaud phenomenon
 • cardiac involvement
 • high CK
 • chronic disease course
 • wheelchair use |

- Myositis-associated antibodies
 - Anti-p155 and anti-p140 found in 30% of JDM patients
 - Other myositis-associated antibodies are more common in overlap syndromes

- Complications
 - Long delays in diagnosis or insufficiently aggressive treatment may put patients at higher risk for complications and poor outcome
 - Muscle weakness and pain can lead to joint contractures
 - Soft tissue calcification, or calcinosis, can develop within a few years of diagnosis or may be seen at presentation of longstanding disease
 - Lipoatrophy may occur accompanied by hyperinsulinism, hypertriglyceridemia, liver dysfunction, acanthosis nigricans, and type 2 diabetes

© Copyright of The Hospital For Sick Children
Medication-related side effects from Corticosteroid toxicity can include infection, osteoporosis, growth delay, cataracts and glaucoma, type 2 diabetes, and hypertension.

- Monitoring disease activity
 - Clinical: skin rash; periungual capillaroscopy; muscle strength and function as measured by the Childhood Myositis Activity Scale (CMAS)
 - Laboratory: muscle enzymes (CK, AST, ALT, LDH, aldolase), inflammatory markers (ESR), lipid abnormalities & organ involvement

- Treatment
 - Supportive: adequate nutrition, physiotherapy, sunscreen for photosensitive rash
 - Medications:
 - Induction therapy using Corticosteroids starting from 1-2 mg/kg/day with slow taper and Methotrexate 15 mg/m²SC
 - Cyclophosphamide may be used for interstitial lung disease and vasculitis
 - IVIG, Cyclosporine, Mycophenolate mofetil or Rituximab if resistant or refractory
 - Topical therapies may also be considered for resistant skin disease

- Course and Outcomes
 - 40-60% of patients have a chronic course, 40-60% have a monophasic course, and <5% have a polyphasic course
 - Ongoing rash and nail fold abnormalities in first 6 months are best predictors of longer time to remission
 - Persistent skin and nail fold changes may represent ongoing inflammatory disease and should be treated accordingly
 - Outcomes are favourable, since most children have no functional disability and <10% have moderate-to-severe disability

References:

7B. Juvenile Polymyositis

- Uncommon in children
- Characterized by proximal and distal muscle weakness
- No associated skin findings and normal nail fold capillaries
- Myositis is typically more severe than in juvenile dermatomyositis or in other connective tissue diseases
- Resistant to treatment
- Anti-signal recognition particle (SRP) autoantibodies are seen in children with polymyositis and are associated with black race, severe onset, distal weakness, Raynaud phenomenon, cardiac involvement, high CK levels, chronic disease course and wheelchair use
References:

7C. Myositis in other connective tissue diseases

- Myositis may be present in other connective tissue diseases, such as systemic lupus erythematosus, systemic sclerosis, mixed connective tissue diseases and overlap syndromes
- Typically accompanied by other features of the various connective tissue diseases, such as arthralgia, malar rash, Raynaud phenomenon, interstitial lung disease
- Laboratory findings include high titres of ANA and myositis-associated antibodies
 - Anti-PM-Scl and anti-Ku associated with scleroderma-myositis overlap syndrome
 - Anti-U1-RNP associated with mixed connective tissue disease and overlap syndromes
- Associated with higher mortality than other categories of myositis

References:
8A. Classification of Scleroderma and Scleroderma-like Disorders

| Morphea/ Localized scleroderma (See Section 6B) | Circumscribed morphea
| | Linear scleroderma
| | Generalized morphea
| | Pansclerotic morphea
| | Mixed morphea
| Systemic sclerosis (See Section 6C) | Diffuse*
| | Limited†
| | Overlap syndromes
| Scleroderma-like disorders | Graft versus host disease
| | Drug or toxin induced (e.g. L-tryptophan, vinyl chloride, bleomycin)
| | Diabetic cheiroarthropathy
| | Phenylketonuria
| | Eosinophilia-myalgia syndrome
| | Eosinophilic fasciitis
| | Premature aging syndromes

Diffuse systemic sclerosis, characterized by skin sclerosis extending proximal to wrists and ankles and involving the trunk, is associated with internal organ involvement and earlier organ dysfunction.

†*Limited systemic sclerosis* (formerly known as CREST syndrome – calcinosis, Raynaud phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia) progresses more slowly, but has a higher risk for later development of pulmonary hypertension.

8B. Localized Scleroderma or Morphea

- Morphea refers to a group of autoimmune disorders with sclerotic skin and subdermal connective tissue changes due to excessive accumulation of collagen
- 25% of children can have extracutaneous manifestations: arthritis, uveitis, neurologic findings (e.g. seizures, headache)

- **Circumscribed morphea**
 - Includes superficial lesions previously known as “plaque” morphea
 - May involve superficial and deep dermis as well as subcutaneous tissues
 - Early lesions are firm, ivory-coloured oval lesions surrounded by reddish-lilac coloured ring suggesting active inflammation
 - Later, there is atrophy, hyper-(rarely hypo-) pigmentation and softening of lesions

- **Generalized morphea**
 - When ≥4 individual circumscribed lesions become confluent or affect ≥2 anatomic sites
 - Often rapid onset over months
• **Linear scleroderma**
 o Most common form in children and adolescents
 o Characterized by ≥ 1 linear streaks (often following dermatomal distribution) extending over face, head, trunk and/or extremities
 o Unilateral in greater than 85% cases
 o Complications include joint flexion contractures, limb atrophy, leg length discrepancy
 o Facial Linear Variants: may be associated with intracranial lesions, seizures, uveitis, and dental abnormalities.
 • *En coup de sabre*: linear lesion involving face or scalp, usually forehead; often alopecia along the lesion
 • *Parry-Romberg syndrome*: progressive hemi-facial atrophy, often involves face below the forehead, more disfiguring, no epidermal involvement

• **Pansclerotic morphea**
 o Least common subtype, but most disabling
 o Circumferential changes (often affecting a limb) that extend into tissues below dermis including muscle, tendon and bone
 o Frequently spares the fingers and toes

• **Mixed morphea**
 o Morphea of ≥ 2 subtypes in an individual patient

• **Diagnosis**
 o Clinical, although skin biopsy may be performed (usually to exclude other disorders)
 o MRI may be useful to determine extent of deep lesions

• **Treatment**
 o Topical: emollients, Corticosteroids, Calcipotriene (vitamin D), Imiquimod 5%, Tacrolimus
 o Systemic: Corticosteroids, Methotrexate, Mycophenolate mofetil, Cyclosporine
 o Other: Psoralen with Ultraviolet A radiation (PUVA) therapy, UV light
 o Supportive: physiotherapy, psychosocial support
 o Surgery for facial lesions, tendo-achilles lengthening

References

8C. **Systemic Sclerosis (SSc)**

• Rare autoimmune disease in children, characterized by symmetrical sclerodermatous changes and visceral involvement
• Mean age of onset ~ 8 years and majority of patients are female (80%)
• 90% of pediatric patients who develop SSc have diffuse subtype and 10% have limited disease (also known as CREST syndrome – calcinosis, Raynaud phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia)
2007 EULAR/PRINTO/PRES Provisional Classification Criteria for Juvenile SSc

Major criterion (mandatory): Proximal skin sclerosis/induration of the skin
Plus ≥ 2 of the following minor criteria:

- Cutaneous (sclerodactyly)
- Peripheral vascular (Raynaud phenomenon, nail fold capillary abnormalities, digital tip ulcers)
- Gastrointestinal (dysphagia, gastroesophageal reflux)
- Cardiac (arrhythmias, heart failure)
- Renal (renal crisis, new-onset arterial hypertension)
- Respiratory (pulmonary fibrosis, decreased DLCO, pulmonary arterial hypertension)
- Neurologic (neuropathy, carpal tunnel syndrome)
- Musculoskeletal (tendon friction rubs, arthritis, myositis)
- Serologic (anticentromere antibodies, SSc-selective autoantibodies including anticientromere and anti-Scl70 (also known as anti-topoisomerase1))

Common clinical features of SSc:

| Raynaud Phenomenon | Common in children with SSc
| Raynaud Phenomenon | Associated with abnormal nail fold vasculature
| Raynaud Phenomenon | Can lead to digital pitting and gangrene
| Dermatologic | Non-pitting edema and/or induration of skin resulting in restricted range of motion, usually in fingers; later evolves to skin thickening causing joint contractures (sclerodactyly)
| Dermatologic | Calcium deposits under the skin, often develop over bridge of nose and extensor surfaces
| Dermatologic | Telangiectasias
| Dermatologic | Abnormal nail fold capillaries
| Musculoskeletal | Arthralgias
| Musculoskeletal | Polyarthritis with minimal joint effusion
| Musculoskeletal | Joint contractures often secondary to skin changes
| Musculoskeletal | Subclinical myositis with mild weakness and slight elevation in muscle enzymes
| Gastrointestinal | Major cause of morbidity
| Gastrointestinal | Severe gastroesophageal reflux disease (GERD) due to dysfunction of lower esophageal sphincter
| Gastrointestinal | Dysmotility leads to stasis, bacterial overgrowth and malabsorption with diarrhea; may also result in severe constipation and megacolon
| Respiratory | Major cause of mortality
| Respiratory | Pulmonary hypertension (most severe)
| Respiratory | Interstitial lung disease (most common, usually bibasilar)
| Respiratory | Inflammatory alveolitis (precedes fibrosis)
| Cardiac | Pericarditis (small pericardial effusions are very common)
| Cardiac | Micro-infarction of cardiac vasculature leads later to cardiomyopathy
| Cardiac | Arrhythmias (from fibrosis of conducting system)

© Copyright of The Hospital For Sick Children
Renal

- Major cause of morbidity prior to development of ACE inhibitors
- Renal vasculopathy leads to renal hypertension (may be life-threatening)
- Proteinuria (may precede hypertension)
- Glomerular disease is unusual

Neurologic

- Rare (e.g. trigeminal neuropathy, carpal tunnel syndrome)

- Investigations
 - Blood work to assess for evidence of systemic inflammation and organ involvement
 - Serology helpful for diagnosis and classification: ANA (common), Rheumatoid factor (rare), anti-Scl 70 (also known as anti-topoisomerase1, usually associated with diffuse SSC), anti-centromere (usually associated with limited SSC)
 - Blood pressure and urinalysis to evaluate renal involvement
 - ECG and echocardiogram to evaluate possible cardiac involvement and screen for pulmonary hypertension
 - Chest X-ray, pulmonary function tests with DLCO and high resolution CT chest to assess for lung disease, especially alveolitis and interstitial pulmonary fibrosis
 - Upper GI series to look for dysmotility and GERD

- Treatment
 - Primarily supportive care
 - Avoid cold, stress, caffeine (to prevent Raynaud phenomenon)
 - Eat small meals, avoid foods that exacerbate gastric acidity, remain upright after eating and elevate head of bed (for dysmotility and GERD)
 - Physiotherapy and occupational therapy
 - Symptomatic treatment
 - GERD: Proton pump inhibitors (e.g. Omeprazole)
 - Raynaud phenomenon: peripheral vasodilators (e.g. Nifedipine)
 - Hypertension, renal disease: ACE Inhibitors (e.g. Enalapril)
 - Pulmonary hypertension: endothelin-1 receptor antagonists (e.g. Bosentan), prostacyclin analogs (Epoprostenol)
 - Systemic therapy
 - Methotrexate for active skin disease
 - Cyclophosphamide, Mycophenolate mofetil and Corticosteroids for alveolitis and interstitial lung disease
 - Other immunomodulatory agents (e.g. Anti-thymocyte globulin) have unclear efficacy in treatment of SSC
 - Autologous stem cell transplantation has been successful in progressive, resistant disease

- Prognosis and outcome
 - Prognosis depends on degree of organ dysfunction, which either later stabilizes or progresses to significant morbidity and mortality
 - Survival much better in children (5 year survival >90%) compared to adults

References

8D. **Mixed Connective Tissue Disease (MCTD)**

- Autoimmune disorder characterized by several clinical and laboratory features:
 - High titre anti-U1 RNP antibodies
 - Swollen hands
 - Raynaud phenomenon
 - Arthritis
 - Myositis
 - Skin rashes (may include malar rash, Gottron-like papules, sclerosis)

- Children may also develop over time GI manifestations (similar to SSc), interstitial lung and renal diseases
- Multiple different diagnostic criteria for MCTD exist (e.g. Sharp, Alarcon-Segovia, Kasukawa, Kahn), but no single set of criteria is validated in children
- Investigations should be directed to assess for multi-organ involvement
- Treatment depends on severity of clinical manifestations and organ involvement

Reference

8E. **Raynaud Phenomenon**

- Vascular spasm in extremities leading to triphasic colour sequence: white (blanching due to ischemia), blue (cyanosis, related to desaturation), then red (erythema due to reperfusion)
- Well-demarcated areas of colour change
- Usually affects fingers and toes, but may also involve other areas (lips, tongue, tip of nose, earlobes)
- Precipitated by cold, physical or emotional stress, caffeine, medications or smoking

- Raynaud phenomenon may be primary or secondary
 - **Primary**
 - No underlying etiology, but often positive family history
 - No peripheral ulcerations
 - **Secondary**
 - Due to underlying autoimmune disease (scleroderma, overlap syndromes, MCTD, SLE, JDM), mechanical obstruction (thoracic outlet syndrome, cervical rib), hyperviscosity (polycythemia), cryoglobulinemia, drugs/toxins, or vibration-induced phenomenon
If isolated Raynaud phenomenon, two best predictive factors for future development of autoimmune diseases are:
1. Positive ANA
2. Abnormal nail fold vasculature

Investigations
- Blood work – complete blood count and differential, inflammatory markers, complement levels, serology (ANA, specific autoantibodies, RF)
- Urinalysis

Treatment
- Preventive (avoid triggers; warm mittens, socks and boots in winter etc)
- Systemic therapy may be used to prevent ischemic tissue injury
 - Peripheral vasodilator, such as Nifedipine, may be titrated to alleviate the Raynaud episodes; avoid medication-related hypotension, headaches or dizziness
 - If severe, may require IV prostaglandins
- Topical therapy (e.g. nitroglycerin 2% ointment) may be used for digital ulcers

References

8F. Sjögren Syndrome

- Multisystem autoimmune disease characterized by decreased secretion of lacrimal and salivary glands leading to dry eyes (keratoconjunctivitis sicca) and xerostomia (dry mouth)
- May present as isolated parotid swelling or parotitis
- Diagnosis requires 2 of the following:
 - Positive ANA>1:320 and positive RF or positive anti-Ro and/or anti-La
 - Keratoconjunctivitis sicca
 - Presence of focal lymphocytic sialadenitis in labial salivary gland biopsy
- Sjögren syndrome may be primary or secondary
 - Primary (idiopathic) has no underlying etiology
 - Secondary occurs in the context of an autoimmune disease, such as systemic lupus erythematosus
- Investigations
 - Ocular: Schirmer’s test (tear production ≤ 5 mm in 5 minutes is abnormal), tear break-up time, Rose Bengal staining of devitalized areas
 - Salivary glands: scintigraphy, biopsy

© Copyright of The Hospital For Sick Children

Page 64
Blood work: complete blood count and differential, inflammatory markers, immunoglobulin levels, serology (ANA, anti-Ro, anti-La, specific autoantibodies, RF)

- Treatment
 - Supportive (artificial tears for dry eyes; increase fluid intake, chewing gum for dry mouth)
 - Pilocarpine or Cevimuline may be used to stimulate saliva production in severe disease

- Complications
 - Increased risk of eye irritation and conjunctivitis
 - Oral problems (dental caries, gingivitis, and infections such as Candida)
 - Increased risk of non-Hodgkin lymphoma

References
9A. Periodic Fever/Autoinflammatory Syndromes

- The recurrent or periodic fever syndromes are defined by ≥3 episodes of unexplained fever in a 6-month period, occurring at least 7 days apart, separated by at least one week of good health.
- Typically associated with a constellation of symptoms, including ocular, oropharyngeal, gastrointestinal, dermatologic, musculoskeletal, and neurologic manifestations.
- Interval between attacks of fever may be irregular or regular.
- Patients feel well between episodes, but often suffer considerably during attacks of fever.

Characteristic Features of the Periodic Fever Syndromes

<table>
<thead>
<tr>
<th>Features</th>
<th>FMF</th>
<th>TRAPS</th>
<th>HIDS</th>
<th>CAPS</th>
<th>NOMID</th>
<th>PFAPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>< 20 yrs</td>
<td>< 20 yrs</td>
<td>< 1 yr</td>
<td>Often < 1yr</td>
<td>At birth or within first months</td>
<td>< 5 yrs</td>
</tr>
<tr>
<td>Duration of attack</td>
<td>1-3 days</td>
<td>1-4 weeks</td>
<td>3-7 days</td>
<td>1-3 days to continuous</td>
<td>Hours or continuous</td>
<td>3-6 days</td>
</tr>
<tr>
<td>Interval of attacks</td>
<td>Weeks to months</td>
<td>Weeks to months</td>
<td>Weeks to months</td>
<td>Variable; cold-induced</td>
<td>Variable</td>
<td>Days</td>
</tr>
<tr>
<td>Skin rash</td>
<td>Erysipelas-like in ~40%</td>
<td>Migratory rash; may be painful</td>
<td>Maculopapular in 90%</td>
<td>Cold-induced; urticarial</td>
<td>Urticarial</td>
<td>Urticarial No</td>
</tr>
<tr>
<td>Adenopathy</td>
<td>No</td>
<td>Not typical</td>
<td>Common; may be generalized</td>
<td>Not typical</td>
<td>Not typical</td>
<td>Not typical Yes</td>
</tr>
<tr>
<td>Oral ulcers</td>
<td>No</td>
<td>No</td>
<td>May occur</td>
<td>No</td>
<td>No</td>
<td>No Yes</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>In ~95%; may have peritoneal signs</td>
<td>Common; colicky</td>
<td>Often present; can be severe with diarrhea</td>
<td>May occur</td>
<td>May occur</td>
<td>May occur</td>
</tr>
<tr>
<td>MSK</td>
<td>Arthralgia; oligoarthritis; myalgia</td>
<td>Localized myalgia; arthralgia; arthritis</td>
<td>Symmetric oligoarthritis of large joints; arthralgia</td>
<td>Arthralgia</td>
<td>Arthralgia; arthritis</td>
<td>Arthralgia; osseous overgrowth Arthralgia</td>
</tr>
<tr>
<td>Serositis</td>
<td>Peritonitis; pleuritis; pericarditis</td>
<td>Pleuritis; peritonitis</td>
<td>No</td>
<td>No</td>
<td>Pericarditis (uncommon)</td>
<td>Not typical No</td>
</tr>
<tr>
<td>Amyloidosis</td>
<td>Occurs in 60% if untreated</td>
<td>Occurs in ~25% if untreated</td>
<td>No</td>
<td>May occur</td>
<td>Occurs in ~30% if untreated</td>
<td>May occur No</td>
</tr>
<tr>
<td>Other</td>
<td>Scrotal swelling and pain</td>
<td>Periorbital edema; conjunctivitis; headache; testicular pain</td>
<td>Conjunctivitis</td>
<td>Conjunctivitis; episcleritis; sensorineural hearing loss</td>
<td>Conjunctivitis; episcleritis; papilledema; chronic meningitis; sensorineural hearing loss</td>
<td></td>
</tr>
<tr>
<td>Inheritance</td>
<td>AR</td>
<td>AD</td>
<td>AR</td>
<td>AD</td>
<td>AD</td>
<td>AD / de novo None</td>
</tr>
<tr>
<td>Mutation</td>
<td>MEFV Pyrin</td>
<td>TNFRSF1A TNF receptor P55</td>
<td>MKV Mevalonate kinase</td>
<td>NLRP3 Cryopyrin</td>
<td>NLRP3 Cryopyrin</td>
<td>NLRP3 Cryopyrin None</td>
</tr>
</tbody>
</table>

AD: autosomal dominant, AR: autosomal recessive
• Other autoinflammatory syndromes include Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome and Deficiency of the Interleukin-1 Receptor Antagonist (DIRA)
• New autoinflammatory diseases continue to be described

Familial Mediterranean Fever (FMF)

• Most common hereditary autoinflammatory disease
• Autosomal recessive inheritance; linked to genetic mutation in MEFV gene encoding pyrin
• Ethnic predilection among Sephardi and Ashkenazi Jewish, Arab, Armenian, Italian, and Turkish populations with carrier rates as high as 1:3 to 1:5
• Usually presents in childhood with 60% of patients presenting prior to 10 years of age
• Clinical features
 o Fever episodes last for 1-3 days and occur without true periodicity
 o Clinical hallmark is serositis (peritonitis, pleuritis, synovitis)
 o Skin: Erysipelas-like rash on shins and dorsum of feet
 o MSK: Monoarthritis, myalgia
• Morbidity is associated with amyloidosis, especially renal amyloidosis
• Treatment
 o Colchicine is highly effective therapy for 85% of patients with FMF
 o Anti-IL-1 therapy with Anakinra, Canakinumab or Rilonacept is effective in Colchicine-resistant FMF

TNF-Receptor Associated Periodic Syndrome (TRAPS)

• Originally known as Familial Hibernian Fever
• Autosomal dominant inheritance
• TRAPS is linked to genetic mutation in TNFRSF1A gene that encodes TNF receptor
• Age of onset ranges from early childhood to several decades
• Clinical features
 o Distinguishing feature is relatively long duration of most attacks, which can last 3-4 weeks and occur at irregular intervals
 o Skin: Migrating erythematous, maculopapular rash that spreads from trunk to extremities
 o MSK: Severe migratory myalgias associated with rash, arthralgias
 o Ocular: Conjunctivitis, peri orbital edema
 o GI: Severe abdominal pain
• Treatment
 o Standard therapy is unproven
 o Corticosteroids provide symptomatic relief but do not diminish frequency
 o Anti-TNF agents (e.g. Etanercept) thought to be promising, but results of studies disappointing
 o Some patients will respond to anti-IL-1 therapy

Mevalonate kinase deficiency- Hyperimmunoglobulinemia D Syndrome (HIDS)

• Rare recurrent fever syndrome
• Caused by genetic mutations in mevalonate kinase (MVK) gene
• More than 90% of patients show symptoms within first year of life
• Clinical features
 o Fever episodes lasting 3-7 days that recur every 4-8 weeks
Fever typically associated with abdominal pain, vomiting and diarrhea
- Other common features include tender cervical lymphadenopathy, oral ulcers, arthralgias, and large joint symmetric arthritis
- Elevated inflammatory markers and WBC
- Often a striking elevation of serum IgD and IgA during fever episodes
- Elevation of urinary mevalonic acid during episodes
- Often triggers are identified, especially immunizations

Treatment
- NSAIDs and corticosteroids often limit symptoms
- Biologic agents (anti-TNF and anti-IL-1) may be more effective

Cryopyrin Associated Periodic Syndrome (CAPS)
- Group of autoinflammatory syndromes that are associated with genetic mutations involving NLRP3 gene encoding cryopyrin
- All syndromes characterized by disease onset in infancy, although may develop later
- Spectrum of 3 diseases on a continuum of increasing disease severity

1. **Familial Cold Autoinflammatory Syndrome (FCAS)**
 - Children develop fever, chills and generalized, non-pruritic urticarial skin lesions within 30 minutes to 6 hours of exposure to cold
 - Symptoms persist up to 24 hours
 - Associated symptoms during attacks include conjunctivitis and arthralgias
 - Amyloidosis extremely rare

2. **Muckle Wells Syndrome (MWS)**
 - Frequent episodes of fever lasting 24-48 hours
 - Characterized by generalized urticarial rash, arthralgias, myalgias, arthritis, and conjunctivitis
 - Progressive neurosensory hearing loss emerges in adolescence
 - Higher risk of amyloidosis (25%)

3. **Neonatal Onset Multisystem Inflammatory Disease (NOMID)**
 - Nearly continuous clinical features that develop shortly after birth
 - Frequent fever episodes lasting 24-48 hours several times per week
 - Distinguishing feature from other autoinflammatory syndromes is poor growth, or failure to thrive
 - Skin: Nearly-constant generalized urticarial rash
 - CNS: Aseptic meningitis, intellectual disability, neurosensory hearing loss, optic nerve atrophy
 - MSK: Deforming arthropathy
 - Ocular: Conjunctivitis, episcleritis, uveitis, papilledema
 - Hepatomegaly, splenomegaly
 - Poor long-term prognosis with high morbidity and mortality
Treatment
- Anti-IL-1 therapy with Anakinra, Canakinumab, or Rilonacept are highly effective treatment for CAPS
- Early treatment may reduce risk of amyloidosis and improve functional outcome

Periodic Fever, Aphthous Stomatitis, Pharyngitis and Adenitis (PFAPA)

- Most common recurrent fever syndrome in children in North America
- No known genetic association or inheritance pattern
- Typically starts in early childhood before 5 years and is self-limited (resolves within 5 years)
- Clinical features
 - Episodes of high fever that occur with regular periodicity every 4-6 weeks
 - Fever episodes generally last up to 5 days
 - Characteristic findings of small non-scarring aphthous ulcers, non-exudative pharyngitis, and cervical adenitis
 - May be associated nausea, vomiting, abdominal pain and headache
 - Throat cultures are consistently negative
- Treatment
 - No consensus regarding treatment
 - Single dose of prednisone at onset of symptoms and, if necessary, the following day can abort the attack; however, interval between fever attacks may shorten
 - Other options include cimetidine and tonsillectomy +/- adenoidectomy

References:

9B. Other Inherited Autoinflammatory Diseases

- The term ‘autoinflammatory’ has been used to distinguish disorders of the innate immune system characterized by recurrent, seemingly unprovoked episodes of inflammation from the more common ‘autoimmune’ diseases characterized by dysregulation of the adaptive immune system (with high-titre autoantibodies and proliferation of antigen-specific T cells)
- The hereditary periodic fever syndromes (described above) were the first group of monogenic disorders to be classified as autoinflammatory
- New monogenic autoinflammatory diseases continue to be discovered (described below)
- The spectrum of autoinflammatory diseases is now thought to include several other conditions such as systemic juvenile idiopathic arthritis (Still’s disease), Behçet disease, and chronic non-bacterial osteomyelitis (CNO or chronic recurrent multifocal osteomyelitis (CRMO), which may prove to be polygenic in origin

Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome

- Rare autosomal dominant autoinflammatory syndrome
- Clinical features
 - Recurrent episodes of sterile, erosive arthritis in early childhood
As patients progress to puberty, skin involvement may predominate. Characterized by cystic acne, recurrent and often debilitating aggressive ulcerative skin lesions of the lower extremities indistinguishable from pyoderma gangrenosum.

Treatment
- Arthritis may respond to corticosteroids, but adverse effects often limit their use.
- Reports of successful treatment with Anakinra, Etanercept, and Infliximab.

Deficiency of the Interleukin-1 Receptor Antagonist (DIRA)

- Rare autosomal recessive autoinflammatory syndrome.
- **Clinical features**
 - Systemic inflammation in the perinatal period.
 - Bone pain with characteristic radiographic findings of multifocal sterile osteolytic bone lesions, widening of multiple anterior ribs, and periostitis.
 - Pustular skin lesions.
- **Treatment**
 - Patients treated with Anakinra have shown rapid clinical and immunological responses.

Deficiency of the Interleukin-36 Receptor Antagonist (DITRA)

- Rare life-threatening multisystem disease with repeated flares of sudden onset.
- **Clinical features**
 - High-grade fever, malaise.
 - Generalized pustular psoriasis.
- **Treatment**
 - Treatment with anakinra has been described.

Deficiency of Adenosine Deaminase 2 (DADA2) (Also see Section 5: Systemic Vasculitis)

- Newly recognized recessively inherited disorder with presentation very early in life.
- **Clinical features**
 - Recurrent fevers, fatigue, arthralgia.
 - Livedoid skin rash, cutaneous vasculitis.
 - Vascular involvement (may include recurrent lacunar strokes, cerebral haemorrhage, polyarteritis nodosa).
 - Also possible hypertension, hepatosplenomegaly.
- **Treatment**
 - Consider DMARD or Anti-TNF therapy; bone marrow transplantation has been described.

Diseases linked to the proteasome and/or interferon-γ (IFN-γ)

- Three previously described independent syndromes have been linked to abnormalities in IFN-γ pathway.
 - JMP (joint contractures, muscle atrophy and panniculitis-induced lipodystrophy) syndrome.
 - CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature) syndrome.
 - NNS (Nakajo-Nishimura syndrome).
- **Clinical features**
 - Recurrent fevers.
Violaceous skin rashes, progressive lipodystrophy
- Arthralgia and arthritis with varying degrees of joint contractures

Treatment
- High dose corticosteroids (but symptoms often rebound with tapering)
- Variable response to anti-TNF, anti-IL-1, and anti-IL-6 agents

References:

9C. Role of Genetic Testing

- Genetic testing may be used to confirm a diagnosis when the clinical pattern fits with one of the autoinflammatory diseases
- A genetic diagnosis should be pursued in a logical manner recognizing the cost and limitations of testing, although panels of genetic mutations associated with these conditions are now more accessible and cost-effective
- A simple interactive tool is available online (http://www.printo.it/periodicfever/) to guide ordering of genetic tests for autoinflammatory diseases

References:

9D. Chronic Non-Bacterial Osteomyelitis (CNO)

- If multiple sites of involvement, may be called chronic recurrent multifocal osteomyelitis (CRMO)
- Some cases (20-30%) are unifocal at diagnosis, whereas others (20-30%) may be multifocal without recurrence
- A non-infectious, autoinflammatory disease involving bone that may be associated with other organ involvement (e.g. skin, gastrointestinal tract)
- Presents with acute or insidious onset of bone pain; some patients also have localized swelling, fever, malaise
- Clinical and radiographic findings initially mimic septic osteomyelitis; however, no abscess formation is noted, cultures are negative, and there is a poor response to antibiotic therapy
- Must consider bone malignancy, infection, and histiocytosis in work-up as CNO is a diagnosis of exclusion
- There are no validated diagnostic criterial for CNO/CRMO, but a clinical score may aid in differentiating non-bacterial osteitis from other bone lesions
2007 Proposed major and minor diagnostic criteria for nonbacterial osteitis (Jansson)

Major criteria
- Osteolytic or sclerotic bone lesion on X-ray
- Multifocal bone lesions
- Pustulosis palmaris or psoriasis
- Sterile bone biopsy with signs of inflammation and/or fibrosis, sclerosis

Minor criteria
- Normal complete blood cell count and good health
- CRP/ESR mildly to moderately elevated
- Course > 6 months
- Hyperostosis
- Association with other autoimmune diseases
- First or second degree relative with autoimmune or autoinflammatory disease

* Diagnosis confirmed by 2 major criteria or 1 major plus 3 minor criteria

- Pathophysiology poorly understood, probably neutrophil mediated
- CNO is associated with inflammatory disorders of skin (e.g. palmar plantar pustulosis, psoriasis, generalized pustulosis, severe acne, pyoderma gangrenosum), and disorders of the gastrointestinal tract (e.g. inflammatory bowel disease), as well as arthritis adjacent to active bone lesions and (less commonly) distant to the osteitis
- The term SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome is often used in adults -- SAPHO may represent a later presentation of childhood CNO or may be a distinct disorder within the same disease spectrum
- CNO affects females > males and is more common in children and adolescents
- Clinical course characterized by periods of exacerbation with symptom-free intervals
- Typical sites of involvement include clavicles, tibia, femur, metaphyses of tubular bones

Imaging
- X-Rays:
 - Osteolytic bone lesions localized in the metaphyses close to the growth plate
 - Sclerosis and periosteal reaction
- MRI (whole body, if available): sensitive to assess extent and activity of lesions, as well as asymptomatic lesions
- Bone scan: may be helpful to assess the extent of lesions

Treatment
- Most lesions resolve without significant sequelae and spontaneous remission can occur; however severe pain, recurrences, and functional limitations may necessitate therapy
- First-line therapy: NSAIDs provide symptomatic relief in up to 80% of patients
- Second-line agents include Corticosteroids, Bisphosphonates (e.g. Pamidronate), Sulfasalazine, Methotrexate, anti-TNF agent (e.g. Infliximab), and IL-1 inhibitors

References:

9E. **Relapsing Polychondritis**

- A rare immune-mediated condition associated with inflammation in cartilage and other tissues (particularly ears, nose, eyes, joints, respiratory tract, and heart valves)
- Children with relapsing polychondritis have similar clinical features to adults, but are more likely to have a family history of autoimmunity and less likely to have associated inflammatory diseases
- Early manifestations often remain unrecognized until emergence of classic features, such as auricular inflammation and saddle-nose deformity
- Associated with high morbidity and mortality
- Screening for complications (e.g., aortic dilatation, cardiac lesions) mandatory

1979 Modified McAdam’s Criteria for Relapsing Polychondritis

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>≥ 3 of the following criteria:</td>
</tr>
<tr>
<td></td>
<td>- Bilateral auricular chondritis</td>
</tr>
<tr>
<td></td>
<td>- Non-erosive, seronegative inflammatory polyarthritis</td>
</tr>
<tr>
<td></td>
<td>- Nasal chondritis</td>
</tr>
<tr>
<td></td>
<td>- Ocular inflammation (conjunctivitis, keratitis, scleritis/episcleritis, uveitis)</td>
</tr>
<tr>
<td></td>
<td>- Respiratory tract chondritis (laryngeal and/or tracheal cartilages)</td>
</tr>
<tr>
<td></td>
<td>- Cochlear and/or vestibular dysfunction (neurosensory hearing loss, tinnitus, vertigo)</td>
</tr>
<tr>
<td>(2)</td>
<td>≥1 of the above clinical criteria plus positive histologic confirmation</td>
</tr>
<tr>
<td>(3)</td>
<td>≥2 separate anatomic locations of chondritis plus response to steroids and/or dapsone</td>
</tr>
</tbody>
</table>

- Diagnosis requires any of the above 3 criteria
- Treatment
 - In adults, largely empiric and based on severity of disease
 - Options include NSAIDs, corticosteroids, methotrexate, dapsone, azathioprine

References:

SECTION 10 – INFECTION & INFECTION-RELATED CONDITIONS

10A. Bone and Joint Infections

Osteomyelitis

- Intraosseous infection with bacteria or rarely, fungi
- Classified as acute, subacute, or chronic
 - Acute osteomyelitis is of recent onset and short duration
 - Most often hematogenous in origin but may result from trauma such as a compound fracture or puncture wound
 - Can be metaphyseal, epiphyseal, or diaphyseal in location
 - Subacute osteomyelitis is of longer duration and is usually caused by less virulent organisms
 - Chronic osteomyelitis results from ineffective treatment of acute osteomyelitis and is characterized by necrosis and sequestration of bone
- Source may be (1) hematogenous (2) local invasion from contiguous source (3) direct invasion of bone
- Usually blood-borne to metaphysis, slow blood flow allows organisms to pass through fenestrations in vessel wall, migrate through haversian canal to sub-periosteal space
- Unique features:
 - Neonates may present with pseudoparalysis or sepsis; fever is common; organisms frequently cross the physis and cause growth arrest
 - Patients with hemoglobinopathy frequently have *Salmonella* and other gram-negative organisms
- Key symptoms:
 - Fever, severe bone pain, and tenderness with or without local swelling should suggest the possibility of acute osteomyelitis
- Bones involved:
 - Femur, tibia, humerus, fibula, calcaneus, pelvis
- Organisms:
 - *Staphylococcus* most common
 - Group A *Streptococcus*, MRSA, atypical Gram negative bacteria and *Salmonella*
- Investigations
 - Blood work: Elevated WBC, ESR, CRP are non-specific
 - Blood cultures (sensitivity 60%), bone cultures (sensitivity 80%)
 - Imaging:
 - X-rays important for exclusion of other diagnoses
 - X-ray signs include soft-tissue swelling, soft tissue edema, subperiosteal changes and bone destruction (diagnostic findings may not be clear until days 10 to 21)
 - Bone scan has positive predictive value of 83% (MRI 85%) and allows detection of other sites
- Treatment
 - For the treatment of uncomplicated osteomyelitis, in which fever and symptoms resolve rapidly, 2 to 4 days of intravenous antibiotics can be followed by high dose oral antibiotics, for a total antibiotic course of 3 weeks.
Septic Arthritis

- Intra-articular infection with bacteria or rarely, fungi
- Medical emergency (surgical emergency if hip or shoulder involved)
- Key symptoms:
 - Usually accompanied by systemic signs of illness (e.g., fever, vomiting, headache)
 - May be a component of a more generalized infection that may include meningitis, cellulitis, osteomyelitis, or pharyngitis
 - Joint pain is usually severe, and the infected joint and periarticular tissues are swollen, hot, and sometimes erythematous
- Joints involved:
 - Joints of lower extremity are most commonly the sites of infection
 - Knees, hips, ankles, and elbows account for 90% of infected joints in children
- Organisms:
 - *Staphylococcus aureus* and non-Group A β *Streptococcus* are most common overall
 - *Streptococcus pneumoniae* is common in children younger than 2 years
 - *Neisseria gonorrhoeae* in sexually active adolescents
 - *Salmonella* is commonly associated with sickle cell disease
 - *Mycobacterium tuberculosis* is an unusual cause of septic monarthritis in childhood
 - *Kingella kingae* is emerging as an important pathogen in children with septic arthritis and may also account for a significant portion of culture negative cases

- Investigations
 - Need to aspirate joint prior to antibiotics
 - Characteristics of synovial fluid:
 - Cloudy, very high WBC count (50,000-300,000, > 75% neutrophils)
 - Gram stain positive
 - Elevated WBC with neutrophilia, CRP and ESR are non-specific
 - Synovial fluid culture (sensitivity 80%), blood culture (sensitivity 10%)
 - Cultures require special handling if suspect *Neisseria* or *Mycobacterium tuberculosis*
 - *Kingella kingae* may require cultures for 7 days to isolate the organism
 - Imaging
 - Plain radiographs are not diagnostic, but may be helpful in excluding other disorders, and may show an underlying osteomyelitis as the etiology of the septic arthritis
 - X-rays may demonstrate only increased soft tissue and capsular swelling
 - MRI superior to CT in delineation of soft tissue structures and MRI changes may be seen as soon as 24 hours following infection; synovial enhancement detected in virtually all patients

- Treatment
 - For the treatment of uncomplicated septic arthritis, in which fever and symptoms resolve rapidly, 2 to 4 days of intravenous antibiotics can be followed by high dose oral antibiotics, for a total antibiotic course of 2 weeks
 - Often surgical debridement and joint irrigation performed by orthopedic surgery
 - Choice of antibiotics depends on presence of predisposing factors, age of child and suspected organism
 - NSAIDs can be used to control fever and to contribute to pain relief
10B. Reactive Arthritis

- A form of non-septic arthritis developing after an extra-articular infection
- Arthritogenic bacteria:
 - GI: *Salmonella, Shigella, Yersinia, Campylobacter*
 - GU: *Chlamydia, Ureaplasma*

- Clinical manifestations
 - Several stages involved:
 1. Clinical infection precedes appearance of arthritis and/or enthesitis by 1 to 4 weeks
 2. Active period of weeks to months
 3. Sustained remission or recurrent episodes which may evolve to ERA, especially in patients that are positive for HLA B27
 - Acute arthritis (marked pain, sometimes erythema over affected joint) and/or enthesitis
 - May see tenosynovitis, bursitis, dactylitis
 - Patients may continue to have fever, weight loss, fatigue and muscle weakness
 - Painless, shallow mucosal ulcers are common
 - Urethritis and cervicitis are rare
 - Conjunctivitis occurs in about two thirds of children at onset
 - Skin lesions include erythema nodosum, circinate balanitis and keratoderma blennorrhagicum

- Investigations
 - Mild decrease in hemoglobin, mild leukocytosis with neutrophilia
 - Elevated inflammatory markers (platelets, immunoglobulins, ESR and CRP)
 - Autoantibodies (RF and ANA) are usually absent, but reactive arthritis most frequently occurs in HLA-B27 positive individuals
 - Synovial fluid is sterile
 - Cultures (blood, urine, stool) obtained at the time of infection may be positive

- Treatment:
 - NSAIDs
 - No clear evidence that antibiotics during inflammatory phase alter course of disease
 - Rarely, Corticosteroids (oral or intra-articular) may be required
 - Sulfasalazine is recommended in the management of resistant arthritis and enthesitis

References:

10C. Acute Rheumatic Fever (ARF)

- The arthritis in ARF has characteristics that help in its differentiation from other causes:
 - Characteristically migratory and additive starting with monoarthritis of large joints
 - Short duration of arthritis (hours to days)
 - Dramatic response to ASA/NSAIDs

Modified Jones Criteria for diagnosis of initial attack of ARF

<table>
<thead>
<tr>
<th>MAJOR Manifestations*</th>
<th>MINOR Manifestations*</th>
<th>Supporting evidence of antecedent GAS infection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyarthritis</td>
<td>Clinical:</td>
<td>Elevated or rising streptococcal antibody titers</td>
</tr>
<tr>
<td>Carditis</td>
<td>o Fever</td>
<td>Positive throat culture</td>
</tr>
<tr>
<td>Sydenham's chorea</td>
<td>o Arthralgia</td>
<td></td>
</tr>
<tr>
<td>Erythema marginatum</td>
<td>Laboratory:</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous nodules</td>
<td>o Elevated ESR, CRP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Prolonged PR interval</td>
<td></td>
</tr>
</tbody>
</table>

*The presence of 2 major manifestations or 1 major plus 2 minor manifestations indicates a high probability of acute rheumatic fever if supported by evidence of preceding GAS infection.

- Treatment
 - 10 days oral antibiotics (usually Penicillin)
 - ASA 100 mg/kg/day divided QID PO for 3–5 days, then 75 mg/kg/day divided QID PO for 4 weeks (or may consider Naproxen instead)
 - Prednisone may be used for carditis/cardiomegaly and heart failure +/- Digoxin
 - Carbamazepine, Phenobarbital, Haloperidol, or Chlorpromazine for chorea
 - Prophylaxis for recurrence:
 - Without carditis: Up to age 21 or 5 years post initial attack, whichever is later
 - With carditis, but without residual heart disease: Up to age 21 or 10 years post initial attack, whichever is later
 - With carditis and residual heart disease: Up to age 40 or 10 years post initial attack, whichever is later

References:

10D. Post-Streptococcal Reactive Arthritis (PSRA)

- Characteristics that help distinguish PSRA from ARF include:
 - Non-migratory arthritis
 - Typically asymmetric oligoarthritis of lower extremities with axial involvement in 25%
 - Shorter latency in PSRA (<10 days) compared to ARF (14-21 days)
Protracted course
- Less dramatic response to ASA/NSAIDs than ARF
- Carditis develops in 5% of children with PSRA (compared to 50% with ARF)

Treatment
- 10 days oral antibiotics (usually Penicillin)
- ASA or NSAID
- Antibiotic prophylaxis has been recommended by some, but this issue is controversial. Prophylaxis can be given for up to 1 year after the onset of symptoms.

Reference:

10E. Lyme Disease

- Most common vector-borne infection in North America and Europe
- *Borrelia burgdorferi* spirochete transmitted by hard-bodied ticks of the genus *Ixodes*
- Found in the temperate zones of the northern hemisphere
- Symptoms of Lyme disease can be divided into early and late manifestations
- Early manifestations of Lyme disease develop within weeks or few months of tick bite
- Late manifestations of Lyme disease begin several months or even years later

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Early Lyme disease</th>
<th>Late Lyme disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Erythema migrans</td>
<td>Acrodermatitis chronic atrophicans*</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Cranial nerve palsy</td>
<td>Chronic encephalomyelitis</td>
</tr>
<tr>
<td></td>
<td>Lymphocytic meningitis</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Arthralgia or arthritis</td>
<td>Arthritis</td>
</tr>
<tr>
<td>Cardiovascular system</td>
<td>Carditis*</td>
<td></td>
</tr>
</tbody>
</table>

*Rare in childhood

- Erythema migrans usually begins as a round, erythematous macule or papule that rapidly expands, often with central clearing, to a diameter of at least 5 cm and resolves within four weeks if untreated
- Arthritis is typically monoarthritis, but may sometimes be polyarthritis

- Investigations
 - Elevated ESR, CSF lymphocytic pleocytosis
 - Serologic confirmation (initially with ELISA, then confirm with Western blot)
 - Do not test for Lyme disease as a cause of musculoskeletal symptoms without an exposure history and appropriate examination findings (highlighted in *Choosing Wisely: Pediatric Rheumatology Top 5 by American College of Rheumatology*)
Treatment
- Varies according to disease manifestations
 - Erythema migrans only:
 - Amoxicillin or Doxycycline (only if >10 years of age) PO x 14-21 days
 - Early Lyme disease (except isolated rash) or Late Lyme disease:
 - Ceftriaxone or Cefotaxime IV x 2-4 weeks, or
 - Amoxicillin or Doxycycline (only if >10 years of age) PO x 4 weeks

Prevention
- Appropriate clothing (e.g. long pants and sleeves)
- Tick repellents (e.g. DEET, permethrin) applied to clothing
- Search for and remove ticks promptly with tweezers

References:
SECTION 11 – UVEITIS

11A. Uveitis

- Inflammation of the uvea, which is the middle layer of the eye
- May be asymptomatic or symptomatic

- Classification based on anatomic location of inflammation:
 - **Anterior uveitis** involves the iris and/or ciliary body
 - **Intermediate uveitis** involves the pars plana between the ciliary body and retina
 - **Posterior uveitis** involves the choroid and/or retina
 - **Panuveitis** describes the presence of inflammation in all three anatomic locations in which there is no predominant site of inflammation

- Complications of uncontrolled uveitis include:
 - Cataracts
 - Glaucoma
 - Band keratopathy
 - Synechiae (adhesion of iris to lens)
 - Cystoid macular edema
 - Vision loss

- Treatment
 - Prompt and aggressive treatment to prevent or minimize visual complications
 - Minimize chronic use of topical corticosteroids (due to side effects such as cataract formation and glaucoma)
 - Close collaboration between rheumatologists and ophthalmologists is essential
 - Options include **topical** (corticosteroids, cycloplegics, mydriatics, anti-glucoma agents) and **systemic** (Methotrexate, Infliximab, Adalimumab, other) therapies
11B. Systemic Inflammatory Diseases Associated with Uveitis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Acute/Chronic</th>
<th>Location</th>
<th>Associated Clinical Features</th>
<th>Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIA (except ERA)</td>
<td>Chronic, recurrent, asymptomatic</td>
<td>Anterior > Posterior</td>
<td>Oligoarthritis >> Polyarthritis</td>
<td>ANA</td>
</tr>
<tr>
<td>JIA (ERA)</td>
<td>Acute, symptomatic</td>
<td>Anterior</td>
<td>Enthesitis, sacroiliitis; often associated with reactive arthritis, IBD, or a family history of these conditions</td>
<td>HLA B27</td>
</tr>
<tr>
<td>Behçet disease</td>
<td>Acute or chronic</td>
<td>Posterior</td>
<td>Recurrent oral and/or genital ulcers, arthritis, skin rash</td>
<td>Pathergy</td>
</tr>
<tr>
<td>Infantile sarcoidosis (Blau syndrome)</td>
<td>Chronic</td>
<td>Posterior, Anterior, Panuveitis</td>
<td>Skin rash, arthritis</td>
<td>Consider genetic testing (NOD2/CARD15 mutations)</td>
</tr>
<tr>
<td>Kawasaki disease</td>
<td>Acute, asymptomatic</td>
<td>Anterior</td>
<td>Consider if patient presents with severe conjunctivitis and photophobia</td>
<td>Echocardiogram</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Chronic</td>
<td>Posterior, Anterior, Panuveitis</td>
<td>Skin rash, arthritis, lung involvement, lymphadenopathy</td>
<td>Biopsy, consider genetic testing</td>
</tr>
<tr>
<td>Tubulo-interstitial nephritis and uveitis (TINU)</td>
<td>Acute</td>
<td>Anterior</td>
<td>Fever, arthralgias, fatigue, abdominal pain, and nephritis; uveitis may present before or after renal disease</td>
<td>U/A, renal function</td>
</tr>
</tbody>
</table>
11C. Infectious Causes of Uveitis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Acute/Chronic</th>
<th>Location</th>
<th>Associated Clinical Features</th>
<th>Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat scratch (Bartonella henselae)</td>
<td>Chronic</td>
<td>Anterior, Posterior</td>
<td>Fever of unknown origin, regional lymphadenopathy, abdominal pain, weight loss, hepatosplenomegaly; Cat exposure</td>
<td>Serology</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Chronic</td>
<td>Posterior</td>
<td>Congenital; fever, malaise, immunocompromised host</td>
<td>Serology, viral PCR</td>
</tr>
<tr>
<td>Herpes virus</td>
<td>Acute or chronic</td>
<td>Anterior, posterior</td>
<td>Keratouveitis, fever, gingivostomatitis</td>
<td>Serology, viral culture and/or PCR</td>
</tr>
<tr>
<td>Lyme disease</td>
<td>Chronic</td>
<td>Anterior, Posterior</td>
<td>Erythema migrans, arthritis, CNS symptoms; Tick bites in endemic areas</td>
<td>Serology</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>Chronic, acute recurrences</td>
<td>Posterior</td>
<td>Congenital exposure (chorioretinitis, hydrocephalus, intracranial calcifications); bilateral symmetric non-tender cervical lymphadenopathy, constitutional symptoms, headaches, myalgias and hepatosplenomegaly; immunocompromised host : cat exposure</td>
<td>Serology</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Chronic</td>
<td>Anterior</td>
<td>Chronic cough, fever, weight loss, multi-organ manifestations; Travel/exposure history</td>
<td>PPD, Chest X-ray</td>
</tr>
</tbody>
</table>

References:

SECTION 12 – PAIN SYNDROMES

12A. Chronic Pain Syndromes

- Primary pain syndromes may have a greater impact on patients’ and families’ quality of life than inflammatory disease
- Many children with chronic musculoskeletal (MSK) pain do not have an identified cause
- Potential role of psychosocial stress in development of chronic pain syndromes

Growing Pains

- Onset usually between 4 and 10 years of age
- Typical history is deep aching cramping pain in bilateral thighs or calves, usually at night and intermittently waking the patient from sleep
- Improve with gentle massage, heat and/or analgesia
- Symptoms disappear by morning
- Normal physical examination
- Investigations not necessary for diagnosis

Fibromyalgia (aka Generalized Amplified Musculoskeletal Pain)

- Chronic generalized pain syndrome
- May be triggered by change in physical activity due to injury or chronic illness
- Treatment strategies for chronic pain in children and adolescents that are supported by research evidence include:
 - Education about chronic pain
 - Progressively increasing aerobic physical activity over time to a target of 60 minutes daily
 - Improving sleep hygiene, including consistent bed and waking times, and eliminating long naps during the day
 - Learning coping strategies for chronic pain
 - Counselling, cognitive behaviour therapy (CBT) and/or other psychotherapy to manage anxiety, low mood and other consequences and contributors to pain
- Medications less effective in childhood fibromyalgia
- Better outcomes in children compared to adults

<table>
<thead>
<tr>
<th>Yunus and Masi Diagnostic Criteria for Fibromyalgia in Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major criteria</td>
</tr>
<tr>
<td>- Generalized musculoskeletal pain in at least 3 areas lasting more than 3 months</td>
</tr>
<tr>
<td>- Absence of underlying condition or cause</td>
</tr>
<tr>
<td>- Normal test results</td>
</tr>
<tr>
<td>- At least 5 out of 18 typical tender points*</td>
</tr>
</tbody>
</table>
Minor criteria
- Fatigue
- Poor sleep
- Headaches
- Chronic anxiety or tension
- Irritable bowel syndrome
- Pain affected by weather
- Subjective soft tissue swelling
- Pain affected by anxiety and stress
- Paresthesia
- Pain affected by activities

Diagnosis requires all 4 major criteria plus 3 of 10 minor criteria, or may have first 3 major criteria plus 4 tender points and 5 minor criteria

*Please see table below for specific tender points.

<table>
<thead>
<tr>
<th>Fibromyalgia Tender Points *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occiput</td>
</tr>
<tr>
<td>Low Cervical</td>
</tr>
<tr>
<td>Trapezius</td>
</tr>
<tr>
<td>Supraspinatus</td>
</tr>
<tr>
<td>Second Rib</td>
</tr>
<tr>
<td>Lateral Epicondyle</td>
</tr>
<tr>
<td>Gluteal</td>
</tr>
<tr>
<td>Greater Trochanter</td>
</tr>
<tr>
<td>Knee</td>
</tr>
</tbody>
</table>

N.B. Nine areas of body x 2 sides = 18 tender points. Apply approximate pressure of 4 kg, or until fingernail blanches.

Complex Regional Pain Syndrome (CRPS) Type I (previously known as Reflex Sympathetic Dystrophy)
- Chronic pain often involving peripheral extremity (lower extremities more common in kids)
- Initiating injury or cause of immobilization can lead to CRPS
- Continuing pain, allodynia, and/or hyperalgesia in which pain is disproportionate to inciting event
- Associated swelling, changes in skin blood flow leading to discoloration, and/or abnormal sweating in the region of pain
- Diagnosis of exclusion, therefore no other condition should account for the degree of pain and dysfunction
- Treatment involves intense physiotherapy with manipulation of extremity with goal to restore function; another potential treatment option is desensitization
Complex Regional Pain Syndrome Type II

- Pain caused by nerve injury, but not limited to distribution of injured nerve
- Similar to type I in symptoms and treatment

References:

12B. Hypermobile joint syndrome

- Joint pain caused by idiopathic increased flexibility – may be generalized or local
- Pain typically occurs after activity
- Need to consider and exclude syndromes associated with generalized joint hypermobility (e.g. Ehlers-Danlos, Marfan, Down, Turner, osteogenesis imperfecta, Stickler syndromes)
- Several different sets of criteria for diagnosis

Diagnostic Criteria for Complex Regional Pain Syndrome

Regional pain and 2 symptoms from each of the following types of symptoms

Neuropathic symptoms
- Burning
- Dysesthesia
- Paresthesia
- Allodynia
- Cold hyperalgesia

Autonomic dysfunction
- Cyanosis
- Mottling
- Hyperhidrosis
- Coolness (by at least 3 degrees Celsius)
- Edema
Beighton Criteria for Hypermobile Joint Syndrome *

- Able to touch thumb to volar surface of forearm (1 point each for left and right)
- Able to hyperextend 5th finger MCP joint to 90 degrees (1 point each for left and right)
- Able to hyperextend elbows > 10 degrees (1 point each for left and right)
- Able to hyperextend knees > 10 degrees (1 point each for left and right)
- Able to touch palms to floor with knees extended (1 point)

* Diagnosis requires ≥ 6/9 points

- Additional features consistent with hypermobility include:
 - Flat feet
 - Able to sit in “W” position
 - Able to touch elbows behind back
 - Able to put heel behind head

- Treatment
 - Education
 - Activity modification (avoid exacerbating activity)
 - Physiotherapy to strengthen muscles around affected joints
 - Orthotics

- Course
 - Can predispose to injuries in sports
 - Does not seem to increase prevalence of joint dislocations in early teens
 - In general, quality of life may be lower due to frequent joint pain

References:
SECTION 13: PEDIATRIC RHEUMATOLOGY EMERGENCIES

13A. Introduction to Pediatric Rheumatologic Emergencies

- Can present with a wide spectrum of clinical illness, affecting virtually any organ
- Prompt recognition and treatment may be organ and even life saving
- May occur in the context of a pre-existing rheumatic disease or may be the initial presentation

13B. Neonatal Lupus Erythematosus with Complete Heart Block (CHB)

- 85% of neonates with CHB have transplacentally acquired maternal antibodies to Ro/SSA or La/SSB
- 1 year mortality up to 54% if untreated
- Rheumatology consultation may be requested urgently for complete heart block with signs of active inflammation (such as pericardial effusion or carditis), congestive heart failure or antenatal fetal hydrops

 Clinical Presentation
 - Bradycardia with potential congestive heart failure (CHF)
 - May already have been diagnosed antenatally
 - May manifest other findings typical of NLE such as rash, hepatitis and cytopenias

 Diagnostic Investigations
 - Confirm CHB with electrocardiogram
 - Cardiology assessment with echocardiogram to assess for active inflammation or endocardial fibroelastosis (EFE)
 - Presence of antinuclear antibodies, specifically those against Ro/SSA and La/SSB in maternal and neonatal serum
 - Elevated troponin levels may indicate secondary myocardial ischemia

 Treatment
 - Infants with complete heart block may need pacemaker soon after birth
 - If active inflammation is seen on echocardiogram, may consider steroids +/- IVIG (treatment will depend on presence of CHF/myocarditis and EFE)

References:

13C. Macrophage Activation Syndrome

- Macrophage activation syndrome (MAS) is a multisystem inflammatory emergency
- Consider in the broad differential of an unexplained persistently febrile child, especially in the presence of pancytopenia – a high index of suspicion is required
- MAS may complicate a number of autoimmune diseases (e.g. systemic arthritis/JIA, SLE, Kawasaki disease most commonly)
- May occur at any time during the disease course (especially following a change in therapy) or may be part of the initial presentation
- Classified as a form of secondary hemophagocytic lymphohistiocytosis (HLH)
 - Primary HLH is an inherited multi-system inflammatory disease caused by congenital abnormalities affecting natural killer cell, macrophage and T cell function
 - Similar abnormalities have recently been identified in patients with systemic JIA
 - Secondary HLH in children can also be triggered by infection, especially EBV

- Diagnostic clinical and laboratory features of MAS
 - Fever (continuous/persistent)
 - Splenomegaly
 - Cytopenias (anemia, thrombocytopenia, neutropenia) or, in systemic JIA, may see decrease in previously elevated cell counts
 - Elevated triglycerides
 - Decreased fibrinogen
 - Elevated ferritin
 - Hemophagocytosis on bone marrow, lymph node, liver or spleen biopsy

- Other important clinical and laboratory features
 - Bleeding, bruising, petechiae, due to DIC-like picture with prolonged INR/PTT, elevated D-dimers
 - Hepatic dysfunction with hepatomegaly, elevated bilirubin and liver enzymes
 - Elevated LDH
 - Persistently raised CRP, but decreasing ESR (due to consumption of fibrinogen)
 - CNS dysfunction, including headache, confusion, seizures, and coma
 - Respiratory distress including ARDS, pulmonary dysfunction
 - Lymphadenopathy
 - Changes in blood pressure and heart rate
 - MAS may be life-threatening and can result in death

- Diagnostic criteria
 - No single universally-accepted diagnostic criteria for MAS
 - Different criteria using a range of abnormal laboratory values have been proposed for various diseases
 - Most criteria involve a combination of the features listed above
 - A high index of suspicion is needed to make the diagnosis

- Urgent investigations prior to starting treatment (in addition to the diagnostic investigations listed above)
 - Cultures of blood, urine and throat should be ordered to rule out an underlying bacterial infection since it will take time to receive results
 - Infectious serology and PCR (e.g. EBV, CMV, Parvovirus B19, Herpes viruses) may be helpful to diagnose an underlying viral infection in primary or secondary HLH and must be ordered before the child receives IVIG
 - If the child does not have an established diagnosis and a systemic rheumatologic condition is suspected, autoantibodies (e.g. ANA, ENA panel, rheumatoid factor, ANCA) must be ordered before the child receives IVIG
Soluble CD163, IL-2 receptor, NK cell function and lymphocyte typing may be helpful to identify underlying immune dysfunction and/or monitor inflammation, but they should be ordered prior to starting treatment. If needed, a direct antiglobulin test should be ordered prior to the child being given any IVIG.

- Treatment
 - Very close monitoring of labs, vital signs, and fluid input/output
 - All patients require supportive management
 - Fluids for hypotension
 - Blood products (platelets, red blood cells)
 - Respiratory support
 - Consider informing and/or involving the pediatric intensive care unit early – if site does not have ability to provide critical care, consider transfer to a different institution
 - If patient is critically ill and complete evaluation is not possible, additional treatment should be commenced without delay
 - If infection suspected, concurrent treatment with appropriate antimicrobial therapy should be started
 - Immunosuppressive therapy
 - IVIG often used to treat clinical features during diagnostic work-up
 - Current HLH protocol involves a step-wise progression starting with high-dose or pulse IV Corticosteroids (may use Dexamethasone or Methylprednisolone) and followed by addition of Cyclosporine and then Etoposide if there is no improvement
 - Plasmapheresis has been used in life-threatening disease
 - Case series suggest that biologic agents, such as Anakinra (anti-IL-1), may be effective treatments for MAS
 - In children with primary HLH or refractory HLH, bone marrow transplant is definitive treatment

References:

13D. Pulmonary Renal Syndrome

- Should be considered in any child presenting with respiratory distress and renal involvement
- Clinical presentation of diffuse alveolar hemorrhage in combination with rapidly progressive glomerulonephritis
- May be rapidly fatal from devastating pulmonary hemorrhage or progressive renal failure
Causes of pulmonary renal syndrome

<table>
<thead>
<tr>
<th>Specific</th>
<th>Systemic lupus erythematosus (SLE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Granulomatosis with polyangiitis (GPA, formerly Wegener granulomatosis)</td>
</tr>
<tr>
<td></td>
<td>Microscopic polyangiitis (MPA)</td>
</tr>
<tr>
<td></td>
<td>Henoch-Schönlein purpura (HSP, now also known as IgA vasculitis)</td>
</tr>
<tr>
<td></td>
<td>Goodpasture syndrome</td>
</tr>
<tr>
<td>Non-specific</td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td></td>
<td>Pulmonary embolism in a child with renal disease</td>
</tr>
<tr>
<td></td>
<td>Pulmonary infection</td>
</tr>
<tr>
<td></td>
<td>Renal disease in a child with pulmonary disease, usually infection</td>
</tr>
<tr>
<td></td>
<td>Hemolytic uremic syndrome</td>
</tr>
<tr>
<td></td>
<td>IgA nephropathy</td>
</tr>
</tbody>
</table>

- Clinical Presentation
 - Dyspnea and cough associated with hypoxemia in room air
 - Frank hemoptysis may not be present in all cases
 - Renal dysfunction: hypertension, nephritic syndrome, nephrotic syndrome, acute renal failure

- Diagnostic Investigations
 - Tests to assess presence of pulmonary hemorrhage or vasculitis
 - Complete blood count showing anemia (often microcytic) or decreasing hemoglobin, elevated reticulocyte count
 - Chest X-ray may show diffuse alveolar infiltrates
 - Chest CT may show patchy ground glass opacities or nodules
 - Pulmonary function tests may show an increase in DLCO consistent with intra-alveolar bleeding
 - Bronchoalveolar lavage demonstrates presence of red blood cells and hemosiderin-laden macrophages
 - Tests to assess presence of renal involvement
 - Urinalysis demonstrating proteinuria, hematuria and/or cellular casts
 - Increases in creatinine and/or urea
 - Tests to determine underlying cause of pulmonary renal syndrome
 - Autoantibodies:
 - Positive ANCA in GPA, MPA, E-GPS (see Section 5)
 - ANA, anti-dsDNA, antibodies to extractable nuclear antigens, and antiphospholipid antibodies may be positive in SLE
 - Anti-glomerular basement membrane (GBM) antibodies seen in Goodpasture syndrome
 - Renal biopsy:
 - ANCA-associated vasculitis: pauci-immune necrotizing crescentic glomerulonephritis
 - SLE: glomerular immune deposits with histologic changes of lupus nephritis
• Goodpasture syndrome: IgG deposition along glomerular basement membrane with crescentic changes
• HSP: deposition of IgA-containing immune complexes in glomeruli with mesangial cell proliferation, glomerular sclerosis and crescent formation
 ▪ Skin biopsy:
 • HSP: leukocytoclastic vasculitis with IgA deposits
 • SLE: immunofluorescence demonstrates immunoglobulins and complement at the dermal-epidermal junction; may see damage of keratinocytes, follicular plugging, basal layer vacuolation, perivascular infiltrates and dermal mucin deposition

• Treatment
 o Early recognition and management of pulmonary renal syndrome is critical
 o Initial therapy is identical for any underlying cause of pulmonary renal syndrome and should be started promptly
 o Supportive therapy may include oxygen, intubation, ventilation, plasmapheresis and/or dialysis
 o Initial immunomodulatory therapy with pulse IV methylprednisolone followed by high dose prednisone (1-2 mg/kg/day)
 o Cyclophosphamide or Rituximab may be used depending on the underlying disease
 o If concurrent infection cannot be excluded, appropriate anti-microbial coverage should be considered

References:

13E. Catastrophic Antiphospholipid Syndrome (APS)

• A severe variant of the classic APS, characterized by:
 o Clinical evidence of multiple organ involvement developing over short period of time
 o Histopathological evidence of multiple small vessel occlusions, although the patient may not have obvious thrombosis
 o Laboratory confirmation of the presence of antiphospholipid antibodies (lupus anticoagulant and anti-cardiolipin), usually in high titre
• Multisystem microvascular thrombosis with a secondary systemic inflammatory response due to tissue damage
• 2/3 of patients have an underlying trigger (infection, surgery, trauma, malignancy, and flares of SLE) and children are more likely to have infectious trigger compared to adults
• Catastrophic APS more likely to be first manifestation of APS in children compared to adults

• Clinical Presentation
 o May be mistaken for overwhelming sepsis
 o Cardiopulmonary manifestations are the most frequent at presentation
 ▪ May look like acute respiratory distress syndrome
Pulmonary embolus or alveolar hemorrhage may occur

- CNS features are next most common
 - Cerebral infarction, seizures, and encephalopathy
 - Cerebral venous sinus thrombosis
- Renal and abdominal involvement is common
 - Renal failure, proteinuria, significant abdominal pain
 - 80% of patients experience an intra-abdominal thrombotic event over the course of an episode
- Clinical signs of systemic inflammation and lab features of DIC

Diagnostic Criteria for Catastrophic Antiphospholipid syndrome

Definite diagnosis requires all of the following criteria:

- Evidence of vessel occlusion, or effect of vessel occlusion, in ≥3 organs or tissues
- Occurrence of diagnostic features simultaneously or in <1 week
- Histopathologic evidence of small vessel occlusion in at least one affected organ or tissue
- Presence of antiphospholipid antibodies (lupus anticoagulant, anti-cardiolipin) persistent over at least 6 weeks

Probable diagnosis if:

- Only 2 organ systems affected, or
- Occurrence of two diagnostic features in <1 week and another within 4 weeks, or
- Histopathologic demonstration of small vessel occlusion not possible
- Unable to demonstrate persistence of antibodies due to death

Diagnostic Investigations

- Tests to confirm presence of thrombotic disorder
 - Look for organ infarction (kidney, spleen, or bowel) on imaging or organ failure (cardiac or renal) with markers of DIC, coagulation dysfunction, and/or peripheral destruction of blood elements
 - May require tissue sample
- Tests to confirm presence of antiphospholipid antibodies
 - Lupus anticoagulant, anti-cardiolipin, anti-beta 2 microglobulin
- Investigate underlying triggers for the episode
 - Cultures and infectious serology to assess for infection (respiratory, skin, urinary tract)
 - Bone marrow biopsy or imaging may be needed to assess for an underlying malignancy
 - Investigations for a systemic inflammatory condition, such as SLE, may be indicated if the child does not have a previous diagnosis

Treatment

- Patients are often critically ill
- ICU support should be available and anticipated
- May need acute measures such as mechanical ventilation or dialysis
- Empiric antibiotics until infection ruled out
Targeting two main pathologic processes may reduce mortality from 50% to 30%:
- Thrombosis treated with parenteral and subsequently oral anticoagulation; may need vasodilators, fibrinolytics, and embolectomy.
- Secondary systemic inflammatory response treated with systemic corticosteroids, plasmapheresis and/or IVIG.

References:

13F. Cardiac Tamponade

- Uncommon but life-threatening complication of pericarditis with effusion.
- Autoimmune cause identified in 13-30% of children with tamponade.
- May occur in children with known rheumatologic disease or as part of initial presentation.

Clinical Presentation
- Typically presents with dyspnea, tachypnea and chest pain.
- May have distended neck veins, facial edema or plethora, tachycardia, pulsus paradoxus, muffled heart sounds, and if advanced, hypotension.
- Fever is common.
- May see clinical features suggestive of associated rheumatic disease, such as systemic lupus erythematosus or systemic arthritis.

Diagnostic Investigations
- ECG typically shows sinus tachycardia and may also show low voltage, pattern of pericarditis may be present.
- Chest X-ray may show a large cardiac silhouette.
- Echocardiography may demonstrate a moderate to large pericardial effusion, findings of chamber collapse, respiratory variation in volumes and flows, IVC dilatation due to increased central venous pressure.

Treatment
- Initial priority is to stabilize cardiorespiratory status and to restore adequate cardiac output by removal of pericardial fluid.
- Temporizing measures can be used such as IV fluids or sympathomimetics.
- More specific treatment depends on the underlying cause of pericarditis.
- Corticosteroids are the mainstay of acute treatment for life-threatening conditions, but other immunosuppressive agents may be added if there is insufficient improvement or if required to treat an underlying rheumatic disease.

References:

13G. Kawasaki Disease Shock Syndrome

- Uncommon but life-threatening complication of Kawasaki disease
- Occurs in <10% of children diagnosed with Kawasaki disease
- Children often present with shock before the diagnosis of Kawasaki disease is made and may have incomplete presentation
- May have more prominent inflammatory markers in early phase and higher risk of coronary artery dilatation

Clinical Presentation
- Hemodynamic instability with tachycardia, hypotension and poor peripheral perfusion
- Typically associated with more severe manifestations of Kawasaki disease, although not necessarily longer duration of fever
- May be associated with more gastrointestinal symptoms (e.g. vomiting), respiratory failure, encephalopathy, acute renal injury and multiple organ dysfunction
- More likely to demonstrate IVIG resistance

Diagnostic Investigations
- Compared to children with Kawasaki disease who are hemodynamically stable, children with Kawasaki disease shock syndrome were more likely to have:
 - Higher CRP and ESR
 - Higher neutrophil counts with bands
 - Lower hemoglobin and platelet counts
 - Lower albumin levels
 - Consumptive coagulopathy with low platelet counts, increased D-dimers and prolonged PTT
- ECG typically shows sinus tachycardia
- Echocardiography:
 - Impaired left ventricular systolic function with a lower ejection fraction and mitral regurgitation
 - More likely to develop coronary artery abnormalities

Treatment
- Initial priority is to stabilize cardiorespiratory status
- Require careful fluid resuscitation – large fluid boluses not recommended as these may precipitate congestive heart failure
- May require inotropic and/or vasopressor support
- IVIG and ASA remain mainstay of therapy; however, IVIG resistance is more common and may need to progress to further therapies, such as corticosteroids (see Section 5C)
- If treated early and aggressively, most children survive without sequelae
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

References:

13H. Renal Crisis in Systemic Scleroderma (SSc)

- Renal impairment is a frequent symptom in SSc
- Severe renal crisis is an acute and life threatening event
- Incidence of 8-10% in limited SSc, 10-0% in diffuse SSc
- Usually develops within the first 5 years of onset of the disease
- Risk factors: rapidly progressing disease, high dose glucocorticoids, presence of anti-RNA polymerase abs

- Clinical Presentation
 - Reflects thromb microangiopathy of kidney similar to thrombotic thrombocytopenic purpura/hemolytic uremic syndrome
 - Acute renal failure without warning signs
 - Sudden onset of moderate to severe hypertension
 - May be accompanied by encephalopathy, left sided heart failure, or acute cerebrovascular event

- Diagnostic Investigations
 - Urine sediment studies show proteinuria and hematuria
 - Renal biopsy findings include proliferation and thickening of arcuate and interlobar arteriole intima, leading to narrowing or full obliteration of vessels
 - CXR may demonstrate pulmonary edema
 - Eye exam may identify retinal hemorrhages or exudates
 - MRI/CT head may show signs of stroke

- Treatment
 - Rapid (within 72 hr) control of blood pressure
 - Provides stabilization of renal function in 70% of patients
 - ACE inhibitors (captopril most widely studied)
 - Dialysis

References:
13l. Acute Adrenal Crisis

- Many children with rheumatic diseases are treated with systemic glucocorticosteroids in high doses to achieve disease control or lower doses for prolonged periods of time to maintain remission
- Adrenal crisis may occur during withdrawal of therapy
- Patients at risk of adrenal suppression include those who have used corticosteroids for more than a 2 week period at >2mg/kg or multiple courses totalling >3 weeks in the previous 6 months
- Associated with higher mortality in the pediatric population

- Clinical Presentation
 - May be variable
 - Many signs and symptoms are non-specific and can be mistaken for symptoms of an intercurrent illness or the underlying condition being treated
 - Signs and symptoms include:
 - Arthralgias, myalgias, generalized weakness
 - Headache
 - Abdominal pain, nausea, vomiting, diarrhea
 - Fever
 - Hypotension
 - Decreased level of consciousness, lethargy
 - Unexplained hypoglycemia
 - Hyponatremia
 - Seizures, coma

- Treatment
 - Hydrocortisone injection 100 mg/m2 (maximum 100 mg) IV/IM stat with IV normal saline volume expansion, followed by hydrocortisone 25 mg/m2 every 6 hours (maximum 25 mg every 6 hours)
 - Consult endocrinologist on call for further advice

- Prevention
 - Stress dosing with hydrocortisone during illness, fever or surgery
 - Education of patient and family

References:
SECTION 14 – MEDICATIONS

Medications are listed in alphabetical order by their generic names with the exception of Corticosteroids and NSAIDs, which are listed by their categories. A table summarizes the mechanisms of action of the monoclonal antibody (mAb) and fusion protein biologic agents.

- **Abatacept**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** Selectively inhibits co-stimulatory signal for T-cell activation
 - **Dose:** 10 mg/kg/dose if <75 kg; 750 mg if 75-100 kg; or 1000 mg if >100 kg via IV every 2 weeks for 3 doses then every 4 weeks thereafter
 - **Side effects:** infusion reactions, anaphylaxis, GI upset, bronchospasm, infections, potential risk of future malignancy

- **Adalimumab**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** recombinant mAb that binds to circulating and cell surface TNFα
 - **Dose:** 24 mg/m²/dose if <15 kg; 20 mg if 15-30 kg; or 40 mg if >30 kg via SC injection every 2 weeks
 - **Side effects:** injection site reactions, headaches, infections, cytopenias, potential risk of future malignancy, demyelinating disease, new or worsening heart failure
 - **Monitoring:** CBC, differential, AST, ALT, albumin every 4-12 weeks

- **Anakinra**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** human recombinant form of IL-1 receptor antagonist (IL-1Ra)
 - **Dose:** 1-2 mg/kg/dose (max 100 mg) SC daily; in sJIA, may titrate up to 4 mg/kg/dose (max 200 mg) SC daily
 - **Side effects:** injection site reactions, infections, GI upset, potential risk of future malignancy
 - **Monitoring:** Neutrophil count prior to initiating; monthly for 3 months; then quarterly

- **Azathioprine**
 - **Class:** antimetabolic agent; purine analogue
 - **Mechanism of action:** interferes with DNA synthesis; inhibits T cells and monocytes
 - **Dose:** 0.5-2.5 mg/kg/day (max 150 mg) PO daily
 - **Side effects:** GI upset, oral ulcers, rash, cytopenias, hepatotoxicity
 - **Monitoring:** CBC, differential and liver enzymes weekly until achieve stable dose then monthly; consider thiopurine methyltransferase (TPMT) genetic testing if abnormally low CBC (e.g., neutropenia) unresponsive to dose reduction

- **Belimumab**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** human IgG1 neutralizing monoclonal antibody against B-lymphocyte stimulating factor (also known as B-lymphocyte simulator [BlySi])
 - **Dose:** 10 mg/kg via IV over 1 hr at 2-week intervals for 3 doses then every 4 weeks
 - **Side effects:** infusion reactions, infections, potential risk of future malignancy
 - **Monitoring:** CBC (e.g., leukopenia) and liver enzymes with each infusion
Biologic agents
- See table below for class and mechanism of action
- See individual drug listing for dosing and side effects

<table>
<thead>
<tr>
<th>Biologic Class</th>
<th>Medication</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>B cell depletion</td>
<td>Belimumab</td>
<td>• Human monoclonal antibody directed against BLYs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inhibits BLYs-induced proliferation of B cells and decreases survival of autoreactive B cells</td>
</tr>
<tr>
<td></td>
<td>Rituximab</td>
<td>• Chimeric mouse-human monoclonal antibody directed against CD20 on pre-B and mature B cells</td>
</tr>
<tr>
<td>IL-1 inhibitors</td>
<td>Anakinra</td>
<td>• IL-1 receptor antagonist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blocks IL-1 receptor to prevent pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td>Canakinumab</td>
<td>• Human monoclonal antibody directed against IL-1β</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to IL-1β to prevent pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td>Rilonacept</td>
<td>• Fully human dimeric fusion protein consisting of extracellular portion of IL-1 receptor and constant region of human immunoglobulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to IL-1 to prevent pro-inflammatory signaling</td>
</tr>
<tr>
<td>IL-6 inhibitor</td>
<td>Tocilizumab</td>
<td>• Humanized monoclonal antibody against IL-6 receptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blocks IL-6 mediated pro-inflammatory signaling</td>
</tr>
<tr>
<td>T cell co-stimulatory modulator</td>
<td>Abatacept</td>
<td>• Fusion protein consisting of extracellular portion of CTLA-4 and constant region of human immunoglobulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blocks co-stimulation and activation of T cells</td>
</tr>
<tr>
<td>TNF inhibitors</td>
<td>Adalimumab</td>
<td>• Human monoclonal antibody directed against circulating and membrane-bound TNFα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to TNFα to block pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May result in cell lysis in presence of complement</td>
</tr>
<tr>
<td></td>
<td>Certolizumab</td>
<td>• PEGylated Fab fragment of humanized monoclonal antibody directed against TNFα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to TNFα to block pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td>Etanercept</td>
<td>• Soluble fusion protein consisting of extracellular portion of TNFα receptor and the constant region of human immunoglobulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to circulating (but not membrane-bound) TNFα to block pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td>Golimumab</td>
<td>• Human monoclonal antibody directed against TNFα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to TNFα to block pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td>Infliximab</td>
<td>• Monoclonal human-mouse antibody directed against circulating and membrane-bound TNFα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binds to TNFα to block pro-inflammatory signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enables antibody-dependent and complement-dependent cytotoxicity</td>
</tr>
</tbody>
</table>

TNF: tumor necrosis factor; IL: interleukin; BLYs: B-lymphocyte stimulator; CTLA-4: cytotoxic T lymphocyte-associated antigen-4; Note: suffix of monoclonal antibody (mAb) = -mab

Biosimilars
- A biotherapeutic product similar in terms of quality, safety, and efficacy to an already licensed reference biotherapeutic product
- Uncertain whether biosimilars will have identical effects to reference biologic product since even minor modifications may alter pharmacokinetic, immunogenetic, glycosylation, sialylation, stability, safety, and efficacy
Rare events and long-term safety will be assessed in postmarketing surveillance studies

- **Canakinumab**
 - **Class**: biologic agent (see Biologic agents for summary table)
 - **Mechanism of action**: fully human mAb targeting IL-1β
 - **Dose**: sJIA → 4 mg/kg/dose SC every 4 weeks; CAPS → 2-4 mg/kg if 15-40 kg; or 150 mg (may consider 300 mg) if >40 kg via SC injection every 8 weeks
 - **Side effects**: injection site reactions, headache, vertigo, GI upset, infections

- **Colchicine**
 - **Class**: alkaloid; commonly used to treat familial Mediterranean fever and Behçet disease
 - **Mechanism of action**: binds to microtubules to prevent activation, proliferation and functioning of inflammatory cells
 - **Dose**: 0.3-1.8 mg/day; may divide into twice daily doses if side effects
 - **Side effects**: GI upset, cytopenias, rhabdomyolysis, renal failure
 - **Monitoring**: CBC, differential, renal function

- **Corticosteroids**
 - Potent anti-inflammatory agents
 - **Mechanism of action**: multiple anti-inflammatory actions including binding to transcription factors (such as NF-κB) to block production of pro-inflammatory proteins; binding to enzymes to block function of inflammatory cells; and direct inhibition of cytokines
 - Commonly used corticosteroids
 - Prednisone, prednisolone (PO)
 - Methylprednisolone (IV)
 - Dexamethasone (PO or IV)
 - Triamcinolone hexacetonide (intra-articular)
 - **Dose**: depends on severity of inflammation
 - **Side effects**: Early: increased appetite, GI upset, gastritis, mood and behaviour changes
 - Late: infections, Cushing syndrome (truncal obesity, moon facies, cutaneous striae), acne, growth suppression, osteoporosis, AVN, psychosis, hypertension, dyslipidemia, hyperglycemia, myopathy, cataracts, glaucoma
 - **Monitoring**: clinical (including blood pressure); consider monitoring bone health carefully if long-term corticosteroids are used

- **Cyclophosphamide**
 - **Class**: cytotoxic alkalating agent
 - **Mechanism of action**: alkylating agent preventing cell division and leading to B and T cell lymphopenia
 - **Dose**: 500-1000 mg/m²/dose IV every 2 to 4 weeks up to 6 months
 - **Side effects**: Short-term: GI upset, alopecia, cytopenias, opportunistic infections, hemorrhagic cystitis, SIADH, teratogenicity, gonadal dysfunction
 - Long-term: bladder fibrosis, bladder carcinoma, fertility issues, malignancy
 - **Monitoring**: CBC, differential on day of infusion and then days 7, 10 and 14 after infusion to monitor cytopenias
 - **Special consideration**: prophylaxis
 - Mesna administered with infusion to prevent hemorrhagic cystitis
- Cotrimazole (trimethoprim-sulfamethoxazole) given 3 times weekly to prevent opportunistic infection by *Pneumocystis jirovecii*

- **Cyclosporine**
 - **Class:** immunomodulatory agent
 - **Mechanism of action:** inhibits calcineurin leading to inhibition of nuclear factor of activated T cells (NF-AT) resulting in profound inhibition of T cell proliferation and cytokine production
 - **Dose:** 3-5 mg/kg/day PO divided twice daily; may be given by IV in MAS
 - **Side effects:** renal toxicity, hypertension, hepatotoxicity, GI upset, tremor, paresthesias, gingival hyperplasia
 - **Monitoring:** BP, renal function, urinalysis, CBC, differential, and liver enzymes monthly

- **Etanercept**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** fully human dimeric fusion protein that binds to circulating TNFα
 - **Dose:** 0.4 mg/kg/dose (max 25 mg) twice weekly or 0.8 mg/kg/dose (max 50 mg) weekly via SC injection
 - **Side effects:** injection site reactions, headaches, infections, cytopenias, potential risk of future malignancy, demyelinating disease, new or worsening heart failure
 - **Monitoring:** CBC, differential, AST, ALT, albumin every 4-12 weeks

- **Hydroxychloroquine**
 - **Class:** disease-modifying antirheumatic drug (DMARD); antimalarial agent
 - **Mechanism of action:** interferes with antigen processing and antigen-antibody interactions, inhibits nucleic acid and protein synthesis
 - **Dose:** up to 6.5 mg/kg/day (max 400 mg) PO daily
 - **Side effects:** retinal toxicity, GI upset, headache, tinnitus, neuropathy, myopathy
 - **Monitoring:** eye examinations every 6 months to assess for retinal deposits

- **Infliximab**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** monoclonal chimeric human-mouse antibody that binds to circulating and cell surface anti-TNFα
 - **Dose:** 3-10 mg/kg/dose on week 0, 2, 6 then every 4 to 8 weeks (may occasionally require higher doses)
 - **Side effects:** injection site reactions, headaches, infections, cytopenias, potential risk of future malignancy, demyelinating disease, new or worsening heart failure
 - **Monitoring:** CBC, differential, AST, ALT, albumin every 4-12 weeks
 - **Special consideration:** human anti-chimeric antibodies (HACAs) can develop and decrease efficacy and increase risk of infusion reactions; incidence is lower in patients receiving continuous (rather than intermittent) therapy and concomitant immunosuppressive therapy (e.g., methotrexate)

- **IVIG**
 - **Class:** biologic agent; plasma-derived protein
 - **Mechanism of action:** multiple anti-inflammatory mechanisms including inhibition of antibody-mediated cytotoxicity; attenuation of complement-mediated damage; modulation of cytokine production; and neutralization of superantigens
 - **Dose:** 2 g/kg/dose IV
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY

- Side effects: infusion reactions, haemolysis, anaphylaxis or allergic reactions, acute aseptic meningitis, acute renal failure
- Special consideration: need to delay future immunizations by 11 months due to possible inefficacy of subsequent vaccines for this time period

- Leflunomide
 - Class: disease-modifying antirheumatic drug (DMARD)
 - Mechanism of action: inhibits enzyme involved in DNA synthesis and interferes with lymphocyte proliferation
 - Dose: 10-20 mg PO daily
 - Side effects: GI upset, allergic rash, hepatotoxicity, teratogenicity, potential risk of future malignancy
 - Monitoring: CBC, differential, liver enzymes every 4-6 weeks
 - Special consideration: need to discuss alcohol avoidance and birth control

- Methotrexate
 - Class: disease-modifying antirheumatic drug (DMARD)
 - Mechanism of action: inhibitor of folate pathway and DNA synthesis
 - Dose: 10-15 mg/m²/dose (max 25 mg) PO or SC weekly (note: often better response and fewer side effects with SC route)
 - Side effects: GI upset, oral ulcers, hepatotoxicity, bone marrow suppression, teratogenicity, potential risk of future malignancy
 - Monitoring: CBC, differential, liver enzymes every 4-6 weeks (consider reducing frequency to every 12 weeks after patients on stable dose for 6 months – highlighted in Choosing Wisely: Pediatric Rheumatology Top 5 by American College of Rheumatology)
 - Special considerations: need to discuss alcohol avoidance and birth control; prophylaxis against oral ulcers with folic acid 1 mg PO daily (6x/week) or 5 mg PO weekly

- Mycophenolate mofetil
 - Class: antimetabolic agent
 - Mechanism of action: inhibits enzyme in DNA synthesis leading to inhibition of B and T cell proliferation, suppresses antibody response
 - Dose: 800-1200 mg/m²/day (max 3000 mg/day) PO divided twice daily
 - Typical starting dose is 250 mg daily
 - Use drug levels (MMF kinetics) to optimize dose
 - Side effects: GI upset, headaches, cytopenias, infections, teratogenicity, potential risk of future malignancy, progressive multifocal leukoencephalopathy (PML)
 - Monitoring: CBC and differential every 4-6 weeks

- Non-steroidal anti-inflammatory drugs (NSAIDs)
 - First-line anti-inflammatory agents for arthritis
 - Mechanism of action: inhibit cyclooxygenase (COX) to block production of pro-inflammatory prostaglandins
 - Dose: see table below for doses of commonly used NSAIDs
 - Side effects: GI upset, gastritis, GI bleeding, renal toxicity, hepatotoxicity, ototoxicity
 - Monitoring: hemoglobin, renal function and liver enzymes with clinic visits
NSAID | **Dose** | **Comments**
---|---|---
Aspirin | High dose (anti-inflammatory): 50-100 mg/kg/day PO div QID | Used mostly in the setting of Kawasaki disease and acute rheumatic fever
 | Low dose (anti-platelet): 3-5 mg/kg/day PO OD | |
Celecoxib | 50 mg PO BID if 10-25 kg | Selective COX-2 inhibitor; expensive
 | 100 mg PO BID if >25 kg | |
Ibuprofen | 20-40 mg/kg/day PO div TID or QID | Commonly used in childhood JIA
Indomethacin | 2-3 mg/kg/day (max 200 mg/day) PO div TID | Commonly used in ERA and sJIA
 | | |
Naproxen | 20 mg/kg/day (max 500 mg/dose) PO div BID | Frequently used in childhood JIA

ERA: enthesitis related arthritis; sJIA: systemic juvenile idiopathic arthritis; COX = cyclooxygenase

- **Pamidronate**
 - **Class:** bisphosphonate
 - **Mechanism of action:** inhibits bone resorption, decreases mineralization by inhibiting osteoclast activity
 - **Dose:** 0.75 mg/kg/day if 2-3 yrs; or 1 mg/kg/day if >3 yrs (max 60 mg/day) monthly for 3 months (note: first dose to be given over 2 days)
 - **Side effects:** bone pain, fever, headaches, lethargy, fetal toxicity, unclear risk of osteonecrosis of the jaw
 - **Monitoring:** calcium and PTH prior to each infusion

- **Rilonacept**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** fully human dimeric fusion protein that blocks IL-1 by acting as a soluble decoy receptor; also known as “IL-1 Trap”
 - **Dose:** loading dose 4.4 mg/kg/dose (max 320 mg) then 2.2 mg/kg/dose SC weekly (max 160mg)
 - **Side effects:** injection reactions, infections, dyslipidemia, potential risk of future malignancy
 - **Monitoring:** serum lipid monitoring after 2-3 months; CBC and liver transaminases at one month, then every 3 months

- **Rituximab**
 - **Class:** biologic agent (see Biologic agents for summary table)
 - **Mechanism of action:** chimeric mouse-human monoclonal antibody that binds to the B cell CD20 receptor (on pre-B and mature B cells but not on stem cells or plasma cells)
 - **Dose:** 375 mg/m² once weekly for 2-4 doses; or 750 mg/m² on days 1 and 15
 - **Side effects:** infusion reactions, allergic reaction, hypogammaglobulinemia, infection, potential risk of future malignancy, progressive multifocal leukoencephalopathy (PML)
 - **Monitoring:** screen for hepatitis B; check B cell numbers before and 1 month after infusion; quantitative immunoglobulins every 3 months; follow liver transaminases
 - **Special considerations:**
 - Prophylaxis with cotrimazole (trimethoprim-sulfamethoxazole) given 3 times weekly to prevent opportunistic infection by *Pneumocystis jirovecii*
 - Human anti-chimeric antibodies (HACAs) can develop and decrease efficacy and increase risk of infusion reactions
Sulfasalazine
- **Class:** disease-modifying antirheumatic drug (DMARD); analogue of 5-ASA linked to a sulfonamide
- **Mechanism of action:** inhibits enzymes and transcription factors involved in production of pro-inflammatory cytokines
- **Dose:** 50 mg/kg/day (max 3 g daily) PO divided twice daily; typically start at 10 mg/kg/day and increase weekly over 4 weeks to target dose
- **Side effects:** GI upset, Stevens-Johnson syndrome, rash, oral ulcers, cytopenias, hypogammaglobulinemia, hepatotoxicity, allergy
- **Monitoring:** CBC, differential and liver enzymes every 2 months, immunoglobulin levels every 6 months
- **Special consideration:** avoid if history of allergy to sulfonamide antibiotics

Tocilizumab
- **Class:** biologic agent (see Biologic agents for summary table)
- **Mechanism of action:** humanized monoclonal antibody that binds both soluble and membrane-bound IL-6 receptor
- **Dose:**
 - Systemic JIA: 12 mg/kg/dose if <30 kg; or 8 mg/kg/dose (max 800 mg) if ≥ 30 kg via IV every 2 weeks
 - Polyarticular JIA: 10 mg/kg/dose if <30 kg; or 8 mg/kg/dose (max 800 mg) if ≥ 30 kg via IV every 4 weeks
- **Side effects:** infusion reactions, headaches, GI upset, gastritis, infections, hepatotoxicity, dyslipidemia, cytopenias, potential risk of future malignancy
- **Monitoring:** AST, ALT, absolute neutrophil count at baseline, second infusion, then every 2-4 weeks; lipid panel 4-8 weeks after start of treatment then every 6 months

Tofacitinib
- **Class:** disease-modifying antirheumatic drug (DMARD); kinase inhibitor
- **Mechanism of action:** interferes with Jak-stat system and subsequent production of selective interleukins and interferons
- **Dose:** adult RA → 5 mg PO twice daily; or extended release 11 mg PO daily
- **Side effects:** infections, anemia, thrombocytopenia, neutropenia, hypercholesterolemia, increased liver transaminases, GI perforation, potential risk of future malignancy
APPENDIX – HELPFUL RESOURCES IN PEDIATRIC RHEUMATOLOGY

Textbooks

Journals

Internet Resources for Images in Rheumatology

Rheumatology Image Bank by the American College of Rheumatology:
http://images.rheumatology.org/

Rheumatlas website:
http://rheumatlas.org

IRHEUM by the European League against Rheumatism:
http://www.irheum.eu/

Clinical Cases and Images by the University of Chicago:

We are interested in your feedback on the guide! If you have comments or questions, please feel free to contact us via email at pedrheumguide@gmail.com.
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abatacept</td>
<td>97, 98</td>
</tr>
<tr>
<td>Acute rheumatic fever</td>
<td>12, 13, 14, 21, 50, 77, 102</td>
</tr>
<tr>
<td>Adalimumab</td>
<td>39, 80, 97, 98</td>
</tr>
<tr>
<td>Adrenal crisis</td>
<td>96</td>
</tr>
<tr>
<td>Anakinra</td>
<td>67, 69, 70, 89, 97, 98</td>
</tr>
<tr>
<td>Anti-N-methyl-D aspartate (NMDA) receptor encephalitis</td>
<td>21, 50, 52, 53</td>
</tr>
<tr>
<td>Antineutrophil cytoplasmic antibodies, or ANCA</td>
<td>10, 37, 38, 44, 45, 47, 88, 90</td>
</tr>
<tr>
<td>Antinuclear antibodies, or ANA</td>
<td>8-9, 61, 87</td>
</tr>
<tr>
<td>Antiphospholipid antibodies</td>
<td>9, 31, 35-36, 90, 91-93</td>
</tr>
<tr>
<td>Antiphospholipid syndrome</td>
<td>21, 35-36, 91-93</td>
</tr>
<tr>
<td>Arthritis</td>
<td>4, 7, 8, 9, 10, 12-15, 18, 20, 23-30, 31-32, 34, 37, 40, 42, 44, 46, 49, 55, 59, 61, 63, 66-73, 75, 76, 77-78, 81-82</td>
</tr>
<tr>
<td>Aspirin, or ASA</td>
<td>35-36, 39-41, 77-78, 94, 102</td>
</tr>
<tr>
<td>Autoimmune encephalitis</td>
<td>21, 52-53</td>
</tr>
<tr>
<td>Autoinflammatory disorders/syndromes</td>
<td>10, 12, 13, 14, 16, 17, 19, 20, 52, 66-73</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>18, 32, 42, 44, 45, 47, 51, 53, 73, 97</td>
</tr>
<tr>
<td>Back pain</td>
<td>15, 25-26</td>
</tr>
<tr>
<td>Behçet disease</td>
<td>10, 12, 14, 16, 17, 18, 19, 21, 37, 48-49, 51, 52, 69, 81, 99</td>
</tr>
<tr>
<td>Belimumab</td>
<td>97, 98</td>
</tr>
<tr>
<td>Betamethasone</td>
<td>34</td>
</tr>
<tr>
<td>Biologic agents</td>
<td>98</td>
</tr>
<tr>
<td>Biosimilars</td>
<td>98-99</td>
</tr>
<tr>
<td>Canakinumab</td>
<td>67, 69, 98, 99</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
<td>34, 93</td>
</tr>
<tr>
<td>Catastrophic antiphospholipid syndrome</td>
<td>91-93</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>102</td>
</tr>
<tr>
<td>Central nervous system vasculitis</td>
<td>21, 37, 50-53</td>
</tr>
<tr>
<td>Chorea</td>
<td>21, 32, 35, 77</td>
</tr>
<tr>
<td>Chronic non-bacterial osteomyelitis</td>
<td>14, 69, 71-72</td>
</tr>
<tr>
<td>Chronic pain syndromes</td>
<td>83-86</td>
</tr>
<tr>
<td>Chronic recurrent multifocal osteomyelitis</td>
<td>14, 69, 71-72</td>
</tr>
<tr>
<td>Churg-Strauss syndrome</td>
<td>see Eosinophilic granulomatosis with polyangiitis</td>
</tr>
<tr>
<td>Colchicine</td>
<td>49, 67, 99</td>
</tr>
<tr>
<td>Complex regional pain syndromes</td>
<td>12, 84-85</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>7, 32, 34, 35, 39, 40, 43, 44, 45, 49, 51, 52, 53, 57, 60, 62, 67, 68, 70, 71, 73, 76, 80, 89, 93, 94, 96, 99</td>
</tr>
<tr>
<td>Cryopyrin associated periodic syndromes</td>
<td>66, 68</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>32, 39, 42, 44, 45, 47, 51, 57, 62, 91, 99</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>57, 60, 89, 100</td>
</tr>
<tr>
<td>A RESIDENT'S GUIDE TO PEDIATRIC RHEUMATOLOGY</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Deficiency of adenosine deaminase-2</td>
<td>21, 43, 70</td>
</tr>
<tr>
<td>Deficiency of interleukin (IL)-1 receptor antagonist</td>
<td>70</td>
</tr>
<tr>
<td>Deficiency of interleukin (IL)-36 receptor antagonist</td>
<td>70</td>
</tr>
<tr>
<td>Dermatomyositis</td>
<td>9, 13, 20, 52, 55-57</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>34, 89, 99</td>
</tr>
<tr>
<td>Disease modifying anti-rheumatic drugs (DMARD)</td>
<td>43, 100, 101, 103</td>
</tr>
<tr>
<td>Drug-induced lupus</td>
<td>9, 34</td>
</tr>
<tr>
<td>Emergencies</td>
<td>87-96</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>21, 50, 52-53</td>
</tr>
<tr>
<td>Enthesitis</td>
<td>6, 10, 14, 23, 24, 25-26, 76, 81</td>
</tr>
<tr>
<td>Enthesitis related arthritis</td>
<td>10, 14, 25-26</td>
</tr>
<tr>
<td>Eosinophilic granulomatosis with polyangiitis</td>
<td>10, 37, 47</td>
</tr>
<tr>
<td>Erythema nodosum</td>
<td>19, 48, 76</td>
</tr>
<tr>
<td>Etanercept</td>
<td>67, 70, 98, 100</td>
</tr>
<tr>
<td>Familial cold autoinflammatory syndrome</td>
<td>66, 68</td>
</tr>
<tr>
<td>Familial Mediterranean Fever</td>
<td>12, 66, 67, 99</td>
</tr>
<tr>
<td>Fever</td>
<td>4-5, 13, 14, 16-17, 18, 19, 21, 25, 31-32, 34, 37, 38, 39-41, 42, 43, 44, 50, 51, 53, 55, 66-73, 74, 75, 76, 77, 81-82, 87-89, 93, 94, 96</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>13, 15, 83-84</td>
</tr>
<tr>
<td>Golimumab</td>
<td>98</td>
</tr>
<tr>
<td>Granulomatosis with polyangiitis</td>
<td>10, 19, 37, 44-45, 52, 90</td>
</tr>
<tr>
<td>Growing pains</td>
<td>83</td>
</tr>
<tr>
<td>Henoch-Schonlein purpura</td>
<td>see IgA vasculitis</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>32, 34, 100</td>
</tr>
<tr>
<td>Hyperimmunoglobulinemia D syndrome</td>
<td>18, 66, 67-68</td>
</tr>
<tr>
<td>Hypermobile joint syndrome</td>
<td>85-86</td>
</tr>
<tr>
<td>Hypermobility</td>
<td>13, 14, 85-86</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>102</td>
</tr>
<tr>
<td>IgA vasculitis</td>
<td>13, 37, 46-47, 90-91</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>102</td>
</tr>
<tr>
<td>Inflammatory brain diseases</td>
<td>50-54</td>
</tr>
<tr>
<td>Infliximab</td>
<td>39, 49, 70, 72, 80, 98, 100</td>
</tr>
<tr>
<td>Iritis</td>
<td>37, 80-82</td>
</tr>
<tr>
<td>Intravenous immune globulin (IVIG)</td>
<td>34, 40-41, 43, 52, 53, 57, 87-89, 93, 94, 100-101</td>
</tr>
<tr>
<td>Joint pain</td>
<td>12-15</td>
</tr>
<tr>
<td>Juvenile dermatomyositis</td>
<td>9, 13, 20, 52, 55-57</td>
</tr>
<tr>
<td>Juvenile idiopathic arthritis</td>
<td>4, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 23-30, 69, 81, 88, 93</td>
</tr>
<tr>
<td>Juvenile polymyositis</td>
<td>9, 20, 56, 57-58</td>
</tr>
<tr>
<td>Kawasakian disease</td>
<td>7, 16, 19, 37, 39-41, 52, 81, 88, 94-95, 102</td>
</tr>
<tr>
<td>Kawasakian disease shock syndrome</td>
<td>94-95</td>
</tr>
<tr>
<td>Leflunomide</td>
<td>29, 30, 101</td>
</tr>
<tr>
<td>Condition</td>
<td>Pages</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Localized scleroderma</td>
<td>59-60</td>
</tr>
<tr>
<td>Lyme disease</td>
<td>12, 13, 14, 16, 19, 20, 21, 78-79</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>19, 25, 31, 39, 68, 81-82, 88</td>
</tr>
<tr>
<td>Macrophage activation syndrome</td>
<td>3, 25, 40, 87-89</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>18, 29, 39, 42, 43, 44, 45, 57, 60, 62, 72, 73, 80, 101</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>47, 89, 91, 99</td>
</tr>
<tr>
<td>Microscopic polyangiitis</td>
<td>10, 37, 45, 52, 90</td>
</tr>
<tr>
<td>Mixed connective tissue disease</td>
<td>9, 13, 20, 58, 63</td>
</tr>
<tr>
<td>Morphea</td>
<td>52, 59-60</td>
</tr>
<tr>
<td>Muckle Wells syndrome</td>
<td>66, 68</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
<td>32, 39, 42, 47, 51, 57, 60, 101</td>
</tr>
<tr>
<td>Myositis</td>
<td>9, 13, 14, 20, 31, 55-58, 61, 63</td>
</tr>
<tr>
<td>Naproxen</td>
<td>77, 102</td>
</tr>
<tr>
<td>Neonatal lupus erythematosus</td>
<td>9, 33-34, 87</td>
</tr>
<tr>
<td>Neonatal onset multisystem inflammatory disease</td>
<td>66, 68-69</td>
</tr>
<tr>
<td>Nephritis</td>
<td>8, 31, 32, 37, 45, 46-47, 81, 89-91</td>
</tr>
<tr>
<td>Neuromyelitis optica</td>
<td>50, 53-54</td>
</tr>
<tr>
<td>Non-bacterial osteomyelitis</td>
<td>14, 69, 71-72</td>
</tr>
<tr>
<td>Non-steroidal anti-inflammatory drugs (NSAID)</td>
<td>7, 27-30, 46, 68, 72, 73, 75, 76, 77-78, 101-102</td>
</tr>
<tr>
<td>Oligoarthritis</td>
<td>23, 27, 28, 49, 66, 77, 81</td>
</tr>
<tr>
<td>Osteomyelitis</td>
<td>12-14, 15, 16, 69, 71-73, 74, 75</td>
</tr>
<tr>
<td>Pamidronate</td>
<td>72, 102</td>
</tr>
<tr>
<td>Parotitis</td>
<td>20, 64</td>
</tr>
<tr>
<td>Periodic fever syndromes</td>
<td>66-71</td>
</tr>
<tr>
<td>Periodic fever, aphthous stomatitis, pharyngitis, adenitis</td>
<td>17, 18, 19, 66, 69</td>
</tr>
<tr>
<td>Poliarthritis nodosa</td>
<td>17, 19, 21, 37, 42-43, 52, 70</td>
</tr>
<tr>
<td>Polyarthritis</td>
<td>9, 24, 27, 29, 32, 49, 61, 73, 77, 78, 81</td>
</tr>
<tr>
<td>Polymyositis</td>
<td>9, 20, 56, 57-58</td>
</tr>
<tr>
<td>Post-streptococcal reactive arthritis</td>
<td>12, 77-78</td>
</tr>
<tr>
<td>Prednisone</td>
<td>42, 46, 47, 69, 77, 91, 99</td>
</tr>
<tr>
<td>Primary angiitis of the central nervous system</td>
<td>21, 50-51</td>
</tr>
<tr>
<td>Primary central nervous system vasculitis</td>
<td>21, 37, 50-51</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>10, 14, 26-27</td>
</tr>
<tr>
<td>Pulmonary renal syndrome</td>
<td>89-91</td>
</tr>
<tr>
<td>Pyogenic arthritis, pyoderma gangrenosum and acne</td>
<td>69-70</td>
</tr>
<tr>
<td>Raynaud phenomenon</td>
<td>5, 14, 31, 35, 56, 57, 58, 59, 60-62, 63-64</td>
</tr>
<tr>
<td>Reactive arthritis</td>
<td>10, 12, 13, 14, 15, 18, 76, 77, 81</td>
</tr>
<tr>
<td>Relapsing polychondritis</td>
<td>73</td>
</tr>
<tr>
<td>Renal crisis</td>
<td>61, 95</td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>12, 13, 14, 21, 50, 77, 102</td>
</tr>
<tr>
<td>Rheumatoid factor</td>
<td>9, 13, 15, 24, 32, 62, 88</td>
</tr>
<tr>
<td>Condition</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Rilonacept</td>
<td>67, 69, 98, 102</td>
</tr>
<tr>
<td>Rituximab</td>
<td>32, 36, 39, 44, 45, 47, 53, 57, 91, 98, 102</td>
</tr>
<tr>
<td>Scleroderma</td>
<td>13, 58, 59-63, 95</td>
</tr>
<tr>
<td>Secondary central nervous system vasculitis</td>
<td>50, 52</td>
</tr>
<tr>
<td>Septic arthritis</td>
<td>12, 13, 14, 15, 75-76</td>
</tr>
<tr>
<td>Sjögren syndrome</td>
<td>9, 20, 21, 33, 53, 64-65</td>
</tr>
<tr>
<td>Stroke</td>
<td>21, 31, 35, 37, 42, 43, 70, 95</td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>18, 72, 76, 103</td>
</tr>
<tr>
<td>Systemic arthritis</td>
<td>14, 16, 17, 19, 25, 30, 88</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>4, 7, 13, 16, 17, 18, 19, 20, 21, 31-32, 50, 52, 58, 64, 90, 93</td>
</tr>
<tr>
<td>Systemic sclerosis</td>
<td>9, 20, 58, 59, 60-63</td>
</tr>
<tr>
<td>Systemic vasculitis</td>
<td>13, 16, 19, 37-49, 52</td>
</tr>
<tr>
<td>Takayasu arteritis</td>
<td>7, 37, 38-39</td>
</tr>
<tr>
<td>Tamponade</td>
<td>34, 93</td>
</tr>
<tr>
<td>TNF-receptor associated periodic syndrome</td>
<td>20, 66, 67</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>29, 39, 98, 103</td>
</tr>
<tr>
<td>Tofacitinib</td>
<td>103</td>
</tr>
<tr>
<td>Triamcinolone hexacetonide</td>
<td>28, 99</td>
</tr>
<tr>
<td>Ulcers</td>
<td>5, 6, 14, 18, 34, 37, 42, 44, 48-49, 61, 64, 66, 68, 69, 76, 81, 97, 101, 103</td>
</tr>
<tr>
<td>Undifferentiated arthritis</td>
<td>27</td>
</tr>
<tr>
<td>Uveitis</td>
<td>8, 10, 23, 25-26, 27, 37, 40, 48, 59-60, 68, 73, 80-82</td>
</tr>
<tr>
<td>Wegener granulomatosis</td>
<td>see Granulomatosis with polyangiitis</td>
</tr>
</tbody>
</table>